Department of Chemistry , University of California Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States.
Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences , University of California Irvine , 2218 Natural Sciences I , Irvine , California 92697 , United States.
J Am Chem Soc. 2018 Apr 18;140(15):4961-4964. doi: 10.1021/jacs.7b11793. Epub 2018 Apr 10.
Polyketides are a large class of bioactive natural products with a wide range of structures and functions. Polyketides are biosynthesized by large, multidomain enzyme complexes termed polyketide synthases (PKSs). One of the primary challenges when studying PKSs is the high reactivity of their poly-β-ketone substrates. This has hampered structural and mechanistic characterization of PKS-polyketide complexes, and, as a result, little is known about how PKSs position the unstable substrates for proper catalysis while displaying high levels of regio- and stereospecificity. As a first step toward a general plan to use oxetanes as carbonyl isosteres to broadly interrogate PKS chemistry, we describe the development and application of an oxetane-based PKS substrate mimic. This enabled the first structural determination of the acyl-enzyme intermediate of a ketosynthase (KS) in complex with an inert extender unit mimic. The crystal structure, in combination with molecular dynamics simulations, led to a proposed mechanism for the unique activity of DpsC, the priming ketosynthase for daunorubicin biosynthesis. The successful application of an oxetane-based polyketide mimic suggests that this novel class of probes could have wide-ranging applications to the greater biosynthetic community interested in the mechanistic enzymology of iterative PKSs.
聚酮类化合物是一大类具有广泛结构和功能的生物活性天然产物。聚酮类化合物是由称为聚酮合酶(PKSs)的大型多结构域酶复合物生物合成的。在研究 PKS 时,主要面临的挑战之一是其多-β-酮底物的高反应性。这阻碍了 PKS-聚酮化合物复合物的结构和机制表征,因此,对于 PKS 如何在显示出高区域和立体选择性的同时,为适当的催化定位不稳定的底物,人们知之甚少。作为使用环氧乙烷作为羰基等排体广泛研究 PKS 化学的一般方案的第一步,我们描述了基于环氧乙烷的 PKS 底物模拟物的开发和应用。这使得首次确定了与惰性延伸单元模拟物结合的酮合酶(KS)酰基-酶中间产物的结构。晶体结构与分子动力学模拟相结合,提出了 DpsC(柔红霉素生物合成的起始酮合酶)独特活性的机制。基于环氧乙烷的聚酮模拟物的成功应用表明,这类新型探针可能广泛应用于对迭代 PKS 的机制酶学感兴趣的更大的生物合成社区。