Department of Physics, The University of Chicago, Chicago, Illinois; James Franck Institute, The University of Chicago, Chicago, Illinois.
Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois; Argonne National Laboratory, Argonne, Illinois.
Biophys J. 2018 Apr 10;114(7):1636-1645. doi: 10.1016/j.bpj.2018.02.020.
Biomolecules exist and function in cellular microenvironments that control their spatial organization, local concentration, and biochemical reactivity. Due to the complexity of native cytoplasm, the development of artificial bioreactors and cellular mimics to compartmentalize, concentrate, and control the local physico-chemical properties is of great interest. Here, we employ self-assembling polypeptide coacervates to explore the partitioning of the ubiquitous cytoskeletal protein actin into liquid polymer-rich droplets. We find that actin spontaneously partitions into coacervate droplets and is enriched by up to ∼30-fold. Actin polymerizes into micrometer-long filaments and, in contrast to the globular protein BSA, these filaments localize predominately to the droplet periphery. We observe up to a 50-fold enhancement in the actin filament assembly rate inside coacervate droplets, consistent with the enrichment of actin within the coacervate phase. Together these results suggest that coacervates can serve as a versatile platform in which to localize and enrich biomolecules to study their reactivity in physiological environments.
生物分子存在于细胞微环境中,并在其中发挥功能,这些微环境控制着它们的空间组织、局部浓度和生化反应性。由于天然细胞质的复杂性,开发人工生物反应器和细胞模拟物来分隔、浓缩和控制局部物理化学性质具有重要意义。在这里,我们利用自组装多肽凝聚物来探索普遍存在的细胞骨架蛋白肌动蛋白在液体聚合物丰富的液滴中的分配情况。我们发现肌动蛋白自发地分配到凝聚物液滴中,并被浓缩高达约 30 倍。肌动蛋白聚合成长达数微米的纤维,与球状蛋白 BSA 不同,这些纤维主要定位于液滴的外周。我们观察到在凝聚物液滴内肌动蛋白纤维组装速率提高了 50 倍,这与凝聚物相中肌动蛋白的浓缩一致。这些结果表明,凝聚物可以作为一种多功能平台,用于定位和浓缩生物分子,以研究它们在生理环境中的反应性。