Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico.
Microbiol Mol Biol Rev. 2018 Apr 11;82(2). doi: 10.1128/MMBR.00068-17. Print 2018 Jun.
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
丝状真菌是一大类真核微生物,它们通过形成简单的管状菌丝生长,这些菌丝能够分化成更复杂的形态结构和不同的细胞类型。菌丝通过在其顶端延伸并在亚顶端区域分支形成丝状网络。快速的顶端延伸需要大量的膜插入和刚性含几丁质的细胞壁的延伸。这个过程由分泌囊泡的连续流动维持,这依赖于微管和肌动蛋白细胞骨架的协调作用以及相应的马达和相关蛋白。囊泡运输细胞壁合成酶,并在进一步运输并与顶端膜融合之前积聚在特殊结构 Spitzenkörper 中。囊泡融合的位置和生长方向由 Spitzenkörper(所谓的细胞末端标记物)和其他参与胞吐过程的蛋白质的位置来启用和定义。囊泡和细胞骨架动力学对顶端延伸也很重要,这是通过早期内涵体的内吞作用进行的膜回收。早期内涵体作为 mRNA、隔膜蛋白、核糖体和过氧化物酶体的多用途运输工具。细胞完整性、菌丝分支和形态发生都是很大程度上依赖于囊泡和细胞骨架动力学的过程。当菌丝分化出用于无性或有性繁殖的结构或介导种间相互作用的结构时,菌丝的基本细胞机制可能通过新蛋白质的合成和/或蛋白质活性的修饰来重新编程。尽管在几种模式丝状真菌中,有一些涉及菌丝这种重新编程的转录网络得到了很好的研究,但这些网络与已知的菌丝形态发生决定因素之间的明确联系尚未建立。