Suppr超能文献

无细胞预测生长细胞的蛋白质表达成本。

Cell-free prediction of protein expression costs for growing cells.

机构信息

Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.

Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.

出版信息

Nat Commun. 2018 Apr 13;9(1):1457. doi: 10.1038/s41467-018-03970-x.

Abstract

Translating heterologous proteins places significant burden on host cells, consuming expression resources leading to slower cell growth and productivity. Yet predicting the cost of protein production for any given gene is a major challenge, as multiple processes and factors combine to determine translation efficiency. To enable prediction of the cost of gene expression in bacteria, we describe here a standard cell-free lysate assay that provides a relative measure of resource consumption when a protein coding sequence is expressed. These lysate measurements can then be used with a computational model of translation to predict the in vivo burden placed on growing E. coli cells for a variety of proteins of different functions and lengths. Using this approach, we can predict the burden of expressing multigene operons of different designs and differentiate between the fraction of burden related to gene expression compared to action of a metabolic pathway.

摘要

翻译异源蛋白会给宿主细胞带来巨大负担,消耗表达资源,导致细胞生长和生产效率降低。然而,预测任何给定基因的蛋白质生产成本是一个主要挑战,因为多个过程和因素结合起来决定了翻译效率。为了能够预测细菌中基因表达的成本,我们在这里描述了一种标准的无细胞裂解物测定法,该方法提供了在表达蛋白质编码序列时资源消耗的相对度量。然后,可以将这些裂解物测量值与翻译的计算模型一起使用,以预测不同功能和长度的各种蛋白质在生长大肠杆菌细胞上所带来的体内负担。通过这种方法,我们可以预测不同设计的多基因操纵子的表达负担,并区分与基因表达相关的负担与代谢途径作用的负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc9/5899134/4ab795d7af23/41467_2018_3970_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验