Suppr超能文献

通过纳米振动刺激控制细胞行为:纳米踢动

Control of cell behaviour through nanovibrational stimulation: nanokicking.

作者信息

Robertson Shaun N, Campsie Paul, Childs Peter G, Madsen Fiona, Donnelly Hannah, Henriquez Fiona L, Mackay William G, Salmerón-Sánchez Manuel, Tsimbouri Monica P, Williams Craig, Dalby Matthew J, Reid Stuart

机构信息

SUPA, Department of Biomedical Engineering, University of Strathclyde, Graham Hills, 50 George Street, Glasgow G1 1QE, UK.

Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2018 May 28;376(2120). doi: 10.1098/rsta.2017.0290.

Abstract

Mechanical signals are ubiquitous in our everyday life and the process of converting these mechanical signals into a biological signalling response is known as mechanotransduction. Our understanding of mechanotransduction, and its contribution to vital cellular responses, is a rapidly expanding field of research involving complex processes that are still not clearly understood. The use of mechanical vibration as a stimulus of mechanotransduction, including variation of frequency and amplitude, allows an alternative method to control specific cell behaviour without chemical stimulation (e.g. growth factors). Chemical-independent control of cell behaviour could be highly advantageous for fields including drug discovery and clinical tissue engineering. In this review, a novel technique is described based on nanoscale sinusoidal vibration. Using finite-element analysis in conjunction with laser interferometry, techniques that are used within the field of gravitational wave detection, optimization of apparatus design and calibration of vibration application have been performed. We further discuss the application of nanovibrational stimulation, or 'nanokicking', to eukaryotic and prokaryotic cells including the differentiation of mesenchymal stem cells towards an osteoblast cell lineage. Mechanotransductive mechanisms are discussed including mediation through the Rho-A kinase signalling pathway. Optimization of this technique was first performed in two-dimensional culture using a simple vibration platform with an optimal frequency and amplitude of 1 kHz and 22 nm. A novel bioreactor was developed to scale up cell production, with recent research demonstrating that mesenchymal stem cell differentiation can be efficiently triggered in soft gel constructs. This important step provides first evidence that clinically relevant (three-dimensional) volumes of osteoblasts can be produced for the purpose of bone grafting, without complex scaffolds and/or chemical induction. Initial findings have shown that nanovibrational stimulation can also reduce biofilm formation in a number of clinically relevant bacteria. This demonstrates additional utility of the bioreactor to investigate mechanotransduction in other fields of research.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'.

摘要

机械信号在我们的日常生活中无处不在,将这些机械信号转化为生物信号响应的过程被称为机械转导。我们对机械转导及其对重要细胞反应的贡献的理解,是一个快速发展的研究领域,涉及到仍未被清楚理解的复杂过程。使用机械振动作为机械转导的刺激,包括频率和振幅的变化,提供了一种无需化学刺激(如生长因子)就能控制特定细胞行为的替代方法。对细胞行为的化学无关控制在包括药物发现和临床组织工程等领域可能具有极大的优势。在这篇综述中,描述了一种基于纳米级正弦振动的新技术。结合激光干涉测量法使用有限元分析,这是引力波探测领域所使用的技术,已经完成了仪器设计的优化和振动应用的校准。我们进一步讨论了纳米振动刺激,即“纳米踢”,对真核细胞和原核细胞的应用,包括间充质干细胞向成骨细胞谱系的分化。讨论了机械转导机制,包括通过Rho - A激酶信号通路的介导。该技术首先在二维培养中使用一个简单的振动平台进行优化,其最佳频率和振幅分别为1 kHz和22 nm。开发了一种新型生物反应器以扩大细胞产量,最近的研究表明,在软凝胶构建物中可以有效地触发间充质干细胞的分化。这一重要步骤首次证明,无需复杂支架和/或化学诱导,就可以生产出用于骨移植的临床相关(三维)体积的成骨细胞。初步研究结果表明,纳米振动刺激还可以减少多种临床相关细菌中的生物膜形成。这证明了该生物反应器在其他研究领域研究机械转导方面的额外效用。本文是“引力波天文学的前景”讨论会议文集的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d821/5915650/fc06e3fce14f/rsta20170290-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验