Dilman Alexander D, Levin Vitalij V
N. D. Zelinsky Institute of Organic Chemistry , Leninsky prosp. 47 , 119991 Moscow , Russian Federation.
Acc Chem Res. 2018 May 15;51(5):1272-1280. doi: 10.1021/acs.accounts.8b00079. Epub 2018 Apr 17.
Compounds containing a difluoromethylene unit have gained increasing attention due to their utility in drug design. Classic methods for the synthesis of these compounds rely on either harsh deoxofluorination reactions or laborious functional group manipulation sequences. In 2013, we proposed a method for assembling gem-difluorinated molecules from a difluorocarbene, a nucleophile, and an electrophile. In this process, a difluorocarbene can be considered an equivalent of a bipolar CF unit. Performing consecutive bond-forming reactions by sequential attachment of a nucleophile and an electrophile to a difluorocarbene provides the opportunity for the synthesis of a wide variety of organofluorine compounds. Silicon reagents were the most effective sources of the difluoromethylene fragment, and among them (bromodifluoromethyl)trimethylsilane (MeSiCFBr) is the reagent of choice. Mildly basic activators such HMPA, DMPU, bromide and acetate ions can initiate the decomposition of the silane with concomitant generation of a difluorocarbene. Organozinc reagents can be employed as nucleophiles, and the CF fragment can insert into the carbon-zinc bond. Primary and secondary benzyl and alkyl organozinc compounds work well. Generally, organozinc reagents tolerate a variety of functional groups. The resulting fluorinated organozinc species can be coupled with heteroatom- or carbon-centered electrophiles. Halogenation of the carbon-zinc bond leads to compounds with bromo- or iododifluoromethyl fragments, which are difficult to access by other means, whereas protonation of that bond generates a valuable difluoromethyl group. Despite the decrease in the reactivity of the carbon-zinc bond caused by the adjacent fluorines, organozinc compounds can effectively participate in copper-catalyzed cross-couplings with allylic and propargyl halides, 1-bromoalkynes, and S-acyl dithiocarbamates. Difluorocarbene can be inserted into the carbon-silicon bond of trimethylsilyl cyanide, and the resulting silane can react with aldehydes and imines to furnish difluorinated nitriles. Interactions of difluorocarbene with heteroatom nucleophiles, such as phosphines or halide ions, are reversible, but the adduct can be trapped by an electrophile. The use of halide ions allows the direct nucleophilic bromo- and iododifluoromethylation of aldehydes and iminium ions. The combination of triphenylphosphine with difluorocarbene generates a difluorinated phosphorus ylide, which can interact with a wide range of π-electrophiles (aldehydes, ketones, acyl chlorides, azomethines, and Michael acceptors) to provide gem-difluorinated phosphonium salts. In the latter species, the carbon-phosphorus bond can be readily cleaved under basic conditions, affording the difluoromethylation products. Primary products resulting from three-component couplings can subsequently be used for further transformations. Single-electron reduction of carbon-phosphorus or carbon-iodine bonds can be conducted under photocatalytic conditions to generate gem-difluorinated radicals. These radicals can be trapped by silyl enol ethers leading to β,β-difluorinated ketones as the primary products. Fluorinated radicals can also undergo intramolecular attacks adjacent to an aromatic ring or a double bond.
含有二氟亚甲基单元的化合物因其在药物设计中的应用而受到越来越多的关注。合成这些化合物的经典方法要么依赖于苛刻的脱氧氟化反应,要么依赖于繁琐的官能团操作序列。2013年,我们提出了一种从二氟卡宾、亲核试剂和亲电试剂组装偕二氟分子的方法。在这个过程中,二氟卡宾可以被认为是双极性CF单元的等价物。通过将亲核试剂和亲电试剂依次连接到二氟卡宾上进行连续的成键反应,为合成各种有机氟化合物提供了机会。硅试剂是二氟亚甲基片段最有效的来源,其中(溴二氟甲基)三甲基硅烷(MeSiCFBr)是首选试剂。温和的碱性活化剂如HMPA、DMPU、溴离子和醋酸根离子可以引发硅烷的分解,同时生成二氟卡宾。有机锌试剂可以用作亲核试剂,CF片段可以插入碳-锌键中。伯苄基和仲苄基以及烷基有机锌化合物效果良好。一般来说,有机锌试剂能耐受多种官能团。生成的氟化有机锌物种可以与以杂原子或碳为中心的亲电试剂偶联。碳-锌键的卤化会生成带有溴代或碘代二氟甲基片段的化合物,这些化合物很难通过其他方法获得,而该键的质子化会生成有价值的二氟甲基基团。尽管相邻氟原子会导致碳-锌键的反应性降低,但有机锌化合物仍能有效地参与铜催化的与烯丙基卤化物、炔丙基卤化物、1-溴代炔烃和S-酰基二硫代氨基甲酸盐的交叉偶联反应。二氟卡宾可以插入三甲基硅基氰的碳-硅键中,生成的硅烷可以与醛和亚胺反应生成二氟腈。二氟卡宾与杂原子亲核试剂如膦或卤离子的相互作用是可逆的,但加合物可以被亲电试剂捕获。使用卤离子可以实现醛和亚胺离子的直接亲核溴代和碘代二氟甲基化。三苯基膦与二氟卡宾的组合会生成二氟代磷叶立德,它可以与多种π-亲电试剂(醛、酮、酰氯、偶氮甲碱和迈克尔受体)相互作用,生成偕二氟代鏻盐。在后者的物种中,碳-磷键在碱性条件下很容易断裂,得到二氟甲基化产物。三组分偶联反应产生的初级产物随后可用于进一步转化。碳-磷键或碳-碘键的单电子还原可以在光催化条件下进行,以生成偕二氟自由基。这些自由基可以被硅烯醇醚捕获,生成β,β-二氟代酮作为主要产物。氟化自由基也可以在芳环或双键附近进行分子内攻击。