Suppr超能文献

口语单词识别模型中的交互作用:反馈有帮助。

Interaction in Spoken Word Recognition Models: Feedback Helps.

作者信息

Magnuson James S, Mirman Daniel, Luthra Sahil, Strauss Ted, Harris Harlan D

机构信息

Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States.

Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States.

出版信息

Front Psychol. 2018 Apr 3;9:369. doi: 10.3389/fpsyg.2018.00369. eCollection 2018.

Abstract

Human perception, cognition, and action requires fast integration of bottom-up signals with top-down knowledge and context. A key theoretical perspective in cognitive science is the forward and backward flow in bidirectionally connected neural networks allows humans and other biological systems to approximate optimal integration of bottom-up and top-down information under real-world constraints. An alternative view is that online feedback is neither necessary nor helpful; purely feed forward alternatives can be constructed for any feedback system, and online feedback could not improve processing and would preclude veridical perception. In the domain of spoken word recognition, the latter view was apparently supported by simulations using the interactive activation model, TRACE, with and without feedback: as many words were recognized more quickly feedback as were recognized faster with feedback, However, these simulations used only a small set of words and did not address a primary motivation for interaction: making a model robust in noise. We conducted simulations using hundreds of words, and found that the majority were recognized more quickly with feedback than without. More importantly, as we added noise to inputs, accuracy and recognition times were better with feedback than without. We follow these simulations with a critical review of recent arguments that online feedback in interactive activation models like TRACE is distinct from other potentially helpful forms of feedback. We conclude that in addition to providing the benefits demonstrated in our simulations, online feedback provides a plausible means of implementing putatively distinct forms of feedback, supporting the interactive activation hypothesis.

摘要

人类的感知、认知和行动需要将自下而上的信号与自上而下的知识和背景快速整合。认知科学中的一个关键理论观点是,双向连接神经网络中的正向和反向信息流使人类和其他生物系统能够在现实世界的限制下近似地实现自下而上和自上而下信息的最优整合。另一种观点是,在线反馈既不必要也无帮助;对于任何反馈系统都可以构建纯粹的前馈替代方案,并且在线反馈不会改善处理过程,反而会妨碍如实感知。在口语单词识别领域,后一种观点显然得到了使用交互式激活模型TRACE进行的有无反馈模拟的支持:有无反馈时识别出的单词数量一样多,而且有反馈时识别速度更快。然而,这些模拟只使用了一小部分单词,并没有涉及交互的一个主要动机:使模型在噪声中具有鲁棒性。我们使用数百个单词进行了模拟,发现大多数单词在有反馈时比没有反馈时识别得更快。更重要的是,当我们在输入中添加噪声时,有反馈时的准确性和识别时间比没有反馈时更好。在这些模拟之后,我们对最近的一些观点进行了批判性回顾,这些观点认为像TRACE这样的交互式激活模型中的在线反馈与其他可能有帮助的反馈形式不同。我们得出结论,除了提供我们模拟中所展示的益处之外,在线反馈还提供了一种合理的方式来实现假定不同形式的反馈,从而支持交互式激活假说。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/454f/5891609/aaf19726a1d1/fpsyg-09-00369-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验