Suppr超能文献

基于机器学习的三维纹理分析可为肾结石患者冲击波碎石成功提供增量预测信息。

Three-Dimensional Texture Analysis with Machine Learning Provides Incremental Predictive Information for Successful Shock Wave Lithotripsy in Patients with Kidney Stones.

机构信息

Institute of Diagnostic and Interventional Radiology and Department of Urology (TH, CP, CDF), University Hospital Zurich, University of Zurich, Switzerland.

Institute of Diagnostic and Interventional Radiology and Department of Urology (TH, CP, CDF), University Hospital Zurich, University of Zurich, Switzerland.

出版信息

J Urol. 2018 Oct;200(4):829-836. doi: 10.1016/j.juro.2018.04.059. Epub 2018 Apr 17.

Abstract

PURPOSE

We sought to determine the predictive value of 3-dimensional texture analysis of computerized tomography images for successful shock wave lithotripsy in patients with kidney stones.

MATERIALS AND METHODS

Patients with preoperative and postoperative computerized tomography, previously untreated kidney stones and a stone diameter of 5 to 20 mm were included in study. A total of 224, 3-dimensional texture analysis features of each kidney stone, including attenuation measured in HU and the clinical variables body mass index, initial stone size and skin to stone distance, were analyzed using 5 commonly used machine learning models. The data set was split in a ratio of 2/3 for model derivation and 1/3 for validation. Machine learning based predictions of shock wave lithotripsy success in the validation cohort were evaluated by calculating sensitivity, specificity and the AUC.

RESULTS

For shock wave lithotripsy success the 3 clinical variables body mass index, initial stone size and skin to stone distance showed an AUC of 0.68, 0.58 and 0.63, respectively. No predictive value was found for HU. A random forest classifier using 3, 3-dimensional texture analysis features had an AUC of 0.79. By combining these 3 features with clinical variables discriminatory accuracy improved further with an AUC of 0.85 for 3-dimensional texture analysis features and skin to stone distance, an AUC of 0.8 for 3-dimensional texture analysis features and body mass index, and an AUC of 0.81 for 3-dimensional texture analysis and stone size.

CONCLUSIONS

This preliminary study indicates that the clinical variables body mass index, initial stone size and skin to stone distance show limited value to predict shock wave lithotripsy success while stone HU values were not predictive. Select 3-dimensional texture analysis features identified by machine learning provided incremental accuracy to predict the success of shock wave lithotripsy.

摘要

目的

我们旨在确定计算机断层扫描图像三维纹理分析对肾结石患者冲击波碎石成功的预测价值。

材料与方法

研究纳入了术前和术后有计算机断层扫描、未经治疗的肾结石和直径为 5 至 20 毫米的患者。对每个肾结石的 224 个三维纹理分析特征,包括 HU 测量的衰减值以及临床变量体重指数、初始结石大小和皮肤到结石的距离,使用 5 种常用的机器学习模型进行了分析。数据集按照 2/3 的比例分为模型推导和 1/3 的验证。通过计算灵敏度、特异性和 AUC,评估验证队列中基于机器学习的冲击波碎石成功预测。

结果

对于冲击波碎石成功,3 个临床变量体重指数、初始结石大小和皮肤到结石距离的 AUC 分别为 0.68、0.58 和 0.63。HU 值没有预测价值。使用 3 个三维纹理分析特征的随机森林分类器的 AUC 为 0.79。通过将这 3 个特征与临床变量相结合,分类准确性进一步提高,三维纹理分析特征和皮肤到结石距离的 AUC 为 0.85,三维纹理分析特征和体重指数的 AUC 为 0.8,三维纹理分析特征和结石大小的 AUC 为 0.81。

结论

这项初步研究表明,临床变量体重指数、初始结石大小和皮肤到结石距离对预测冲击波碎石成功的价值有限,而结石 HU 值没有预测价值。机器学习确定的三维纹理分析特征提供了额外的准确性,可预测冲击波碎石的成功。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验