Davies Daniel W, Butler Keith T, Skelton Jonathan M, Xie Congwei, Oganov Artem R, Walsh Aron
Centre for Sustainable Chemical Technologies , Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , UK . Email:
Science and Technology on Thermostructural Composite Materials Laboratory , International Center for Materials Discovery , School of Materials Science and Engineering , Northwestern Polytechnical University , Xian , Shaanxi 710072 , Peoples Republic of China.
Chem Sci. 2017 Dec 4;9(4):1022-1030. doi: 10.1039/c7sc03961a. eCollection 2018 Jan 28.
The standard paradigm in computational materials science is INPUT: Structure; OUTPUT: Properties, which has yielded many successes but is ill-suited for exploring large areas of chemical and configurational hyperspace. We report a high-throughput screening procedure that uses compositional descriptors to search for new photoactive semiconducting compounds. We show how feeding high-ranking element combinations to structure prediction algorithms can constitute a pragmatic computer-aided materials design approach. Techniques based on structural analogy (data mining of known lattice types) and global searches (direct optimisation using evolutionary algorithms) are combined for translating between chemical composition and crystal structure. The properties of four novel chalcohalides (SnSCl, SnSF, CdSCl and CdSF) are predicted, of which two are calculated to have bandgaps in the visible range of the electromagnetic spectrum.
输入为结构,输出为性质。这种范式已取得诸多成功,但并不适合探索化学和构型超空间的大片区域。我们报告了一种高通量筛选程序,该程序使用成分描述符来搜索新型光活性半导体化合物。我们展示了如何将排名靠前的元素组合输入结构预测算法,从而构成一种实用的计算机辅助材料设计方法。基于结构类比(已知晶格类型的数据挖掘)和全局搜索(使用进化算法进行直接优化)的技术相结合,用于在化学成分和晶体结构之间进行转换。我们预测了四种新型卤硫化物(SnSCl、SnSF、CdSCl和CdSF)的性质,其中两种经计算在电磁光谱的可见光范围内具有带隙。