Suppr超能文献

基于电化学激活的微流控中 DNA 基化学反应网络的时空控制。

Spatiotemporal control of DNA-based chemical reaction network via electrochemical activation in microfluidics.

机构信息

BioMEMS, Univ. Lille, CNRS, ISEN, UMR 8520 - IEMN, F-59000, Lille, France.

Laboratoire Gulliver, Ecole Supérieure de Physique et de Chimie Industrielles, PSL Research University, and CNRS, Paris, France.

出版信息

Sci Rep. 2018 Apr 23;8(1):6396. doi: 10.1038/s41598-018-24659-7.

Abstract

In recent years, DNA computing frameworks have been developed to create dynamical systems which can be used for information processing. These emerging synthetic biochemistry tools can be leveraged to gain a better understanding of fundamental biology but can also be implemented in biosensors and unconventional computing. Most of the efforts so far have focused on changing the topologies of DNA molecular networks or scaling them up. Several issues have thus received little attention and remain to be solved to turn them into real life technologies. In particular, the ability to easily interact in real-time with them is a key requirement. The previous attempts to achieve this aim have used microfluidic approaches, such as valves, which are cumbersome. We show that electrochemical triggering using DNA-grafted micro-fabricated gold electrodes can be used to give instructions to these molecular systems. We demonstrate how this approach can be used to release at specific times and locations DNA- based instructions. In particular, we trigger reaction-diffusion autocatalytic fronts in microfluidic channels. While limited by the stability of the Au-S bond, this easy to implement, versatile and scalable technique can be used in any biology laboratory to provide new ways to interact with any DNA-based computing framework.

摘要

近年来,已经开发出 DNA 计算框架来创建可用于信息处理的动态系统。这些新兴的合成生物化学工具可用于更好地理解基础生物学,也可用于生物传感器和非常规计算。到目前为止,大多数努力都集中在改变 DNA 分子网络的拓扑结构或扩大其规模上。因此,有几个问题几乎没有得到关注,仍需要解决,才能将其转化为现实生活中的技术。特别是,能够轻松实时与之交互是一个关键要求。以前为了实现这一目标所做的尝试都使用了微流控方法,如阀门,这些方法非常繁琐。我们表明,使用 DNA 接枝微加工金电极进行电化学触发可以用于向这些分子系统发出指令。我们展示了如何使用这种方法在特定时间和地点释放基于 DNA 的指令。特别是,我们在微流控通道中触发反应-扩散自催化前缘。虽然受到 Au-S 键稳定性的限制,但这种易于实施、多功能且可扩展的技术可用于任何生物学实验室,为与任何基于 DNA 的计算框架进行交互提供新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a4/5913268/c34e33104d43/41598_2018_24659_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验