Suppr超能文献

深势能分子动力学:具有量子力学精度的可扩展模型。

Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics.

机构信息

Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA.

Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People's Republic of China and CAEP Software Center for High Performance Numerical Simulation, Huayuan Road 6, Beijing 100088, People's Republic of China.

出版信息

Phys Rev Lett. 2018 Apr 6;120(14):143001. doi: 10.1103/PhysRevLett.120.143001.

Abstract

We introduce a scheme for molecular simulations, the deep potential molecular dynamics (DPMD) method, based on a many-body potential and interatomic forces generated by a carefully crafted deep neural network trained with ab initio data. The neural network model preserves all the natural symmetries in the problem. It is first-principles based in the sense that there are no ad hoc components aside from the network model. We show that the proposed scheme provides an efficient and accurate protocol in a variety of systems, including bulk materials and molecules. In all these cases, DPMD gives results that are essentially indistinguishable from the original data, at a cost that scales linearly with system size.

摘要

我们提出了一种分子模拟方案,即深度势能分子动力学(DPMD)方法,该方法基于多体势和由精心设计的、使用从头算数据训练的深度神经网络生成的原子间力。该神经网络模型保留了问题中的所有自然对称性。从某种意义上说,该模型是基于第一性原理的,除了网络模型之外,没有任何其他的特别成分。我们表明,所提出的方案在各种系统中提供了一种高效准确的方案,包括体材料和分子。在所有这些情况下,DPMD 的结果与原始数据本质上无法区分,其成本与系统大小呈线性比例。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验