Suppr超能文献

深势能分子动力学:具有量子力学精度的可扩展模型。

Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics.

机构信息

Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA.

Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People's Republic of China and CAEP Software Center for High Performance Numerical Simulation, Huayuan Road 6, Beijing 100088, People's Republic of China.

出版信息

Phys Rev Lett. 2018 Apr 6;120(14):143001. doi: 10.1103/PhysRevLett.120.143001.

Abstract

We introduce a scheme for molecular simulations, the deep potential molecular dynamics (DPMD) method, based on a many-body potential and interatomic forces generated by a carefully crafted deep neural network trained with ab initio data. The neural network model preserves all the natural symmetries in the problem. It is first-principles based in the sense that there are no ad hoc components aside from the network model. We show that the proposed scheme provides an efficient and accurate protocol in a variety of systems, including bulk materials and molecules. In all these cases, DPMD gives results that are essentially indistinguishable from the original data, at a cost that scales linearly with system size.

摘要

我们提出了一种分子模拟方案,即深度势能分子动力学(DPMD)方法,该方法基于多体势和由精心设计的、使用从头算数据训练的深度神经网络生成的原子间力。该神经网络模型保留了问题中的所有自然对称性。从某种意义上说,该模型是基于第一性原理的,除了网络模型之外,没有任何其他的特别成分。我们表明,所提出的方案在各种系统中提供了一种高效准确的方案,包括体材料和分子。在所有这些情况下,DPMD 的结果与原始数据本质上无法区分,其成本与系统大小呈线性比例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验