Suppr超能文献

双 TLR 激动剂纳米盘作为疫苗和免疫疗法的强佐剂系统。

Dual TLR agonist nanodiscs as a strong adjuvant system for vaccines and immunotherapy.

机构信息

Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

J Control Release. 2018 Jul 28;282:131-139. doi: 10.1016/j.jconrel.2018.04.041. Epub 2018 Apr 25.

Abstract

Recent studies have shown that certain combinations of Toll-like receptor (TLR) agonists can induce synergistic immune activation. However, it remains challenging to achieve such robust responses in vivo in a manner that is effective, facile, and amenable for clinical translation. Here, we show that MPLA, a TLR4 agonist, and CpG, a TLR9 agonist, can be efficiently co-loaded into synthetic high-density lipoprotein nanodiscs, forming a potent adjuvant system (ND-MPLA/CpG) that can be readily combined with a variety of subunit antigens, including proteins and peptides. ND-MPLA/CpG significantly enhanced activation of dendritic cells, compared with free dual adjuvants or nanodiscs delivering a single TLR agonist. Importantly, mice immunized with physical mixtures of protein antigens ND-MPLA/CpG generated strong humoral responses, including induction of IgG responses against protein convertase subtilisin/kexin 9 (PCSK9), leading to 17-30% reduction of the total plasma cholesterol levels. Moreover, ND-MPLA/CpG exerted strong anti-tumor efficacy in multiple murine tumor models. Compared with free adjuvants, ND-MPLA/CpG admixed with ovalbumin markedly improved antigen-specific CD8+ T cell responses by 8-fold and promoted regression of B16F10-OVA melanoma (P < 0.0001). Furthermore, ND-MPLA/CpG admixed with E7 peptide antigen elicited ~20% E7-specific CD8+ T cell responses and achieved complete regression of established TC-1 tumors in all treated animals. Taken together, our work highlights the simplicity, versatility, and potency of dual TLR agonist nanodiscs for applications in vaccines and cancer immunotherapy.

摘要

最近的研究表明,某些 Toll 样受体(TLR)激动剂的组合可以诱导协同免疫激活。然而,以有效、简便且适合临床转化的方式在体内实现如此强大的反应仍然具有挑战性。在这里,我们表明 TLR4 激动剂 MPLA 和 TLR9 激动剂 CpG 可以有效地共装载到合成高密度脂蛋白纳米盘(nanodisc)中,形成一种有效的佐剂系统(ND-MPLA/CpG),可与多种亚单位抗原(包括蛋白质和肽)轻易结合。与游离双佐剂或递呈单个 TLR 激动剂的纳米盘相比,ND-MPLA/CpG 显著增强了树突状细胞的激活。重要的是,用蛋白抗原 ND-MPLA/CpG 物理混合物免疫的小鼠产生了强烈的体液反应,包括诱导针对蛋白转化酶枯草溶菌素/激肽释放酶 9(PCSK9)的 IgG 反应,导致总血浆胆固醇水平降低 17-30%。此外,ND-MPLA/CpG 在多种小鼠肿瘤模型中发挥了强大的抗肿瘤功效。与游离佐剂相比,ND-MPLA/CpG 与卵清蛋白混合后可使抗原特异性 CD8+T 细胞反应提高 8 倍,并显著促进 B16F10-OVA 黑色素瘤的消退(P<0.0001)。此外,ND-MPLA/CpG 与 E7 肽抗原混合可引发约 20%的 E7 特异性 CD8+T 细胞反应,并使所有治疗动物中已建立的 TC-1 肿瘤完全消退。总之,我们的工作强调了双 TLR 激动剂纳米盘在疫苗和癌症免疫治疗中的简单性、多功能性和高效性。

相似文献

1
Dual TLR agonist nanodiscs as a strong adjuvant system for vaccines and immunotherapy.
J Control Release. 2018 Jul 28;282:131-139. doi: 10.1016/j.jconrel.2018.04.041. Epub 2018 Apr 25.
3
Fibronectin EDA and CpG synergize to enhance antigen-specific Th1 and cytotoxic responses.
Vaccine. 2016 May 5;34(21):2453-2459. doi: 10.1016/j.vaccine.2016.03.057. Epub 2016 Mar 24.
5
Pickering emulsion-guided monomeric delivery of monophosphoryl lipid A for enhanced vaccination.
J Control Release. 2024 Oct;374:39-49. doi: 10.1016/j.jconrel.2024.08.005. Epub 2024 Aug 8.
8
An allergen-fused dendritic cell-binding peptide enhances in vitro proliferation of equine T-cells and cytokine production.
Vet Immunol Immunopathol. 2022 Jan;243:110351. doi: 10.1016/j.vetimm.2021.110351. Epub 2021 Nov 9.

引用本文的文献

2
Engineering bioactive mineralized tumor cells for tumor immunotherapy.
Front Bioeng Biotechnol. 2025 Apr 1;13:1582490. doi: 10.3389/fbioe.2025.1582490. eCollection 2025.
3
Nanoparticles-Assisted Peptide Cancer Vaccine Delivery.
Methods Mol Biol. 2025;2926:129-141. doi: 10.1007/978-1-0716-4542-0_10.
4
Current Landscape of Therapeutic Cancer Vaccines.
Methods Mol Biol. 2025;2926:1-14. doi: 10.1007/978-1-0716-4542-0_1.
5
PCSK9 Manipulates Lipid Metabolism and the Immune Microenvironment in Cancer.
Onco Targets Ther. 2025 Mar 27;18:411-427. doi: 10.2147/OTT.S504637. eCollection 2025.
6
Nanovaccines empowering CD8 T cells: a precision strategy to enhance cancer immunotherapy.
Theranostics. 2025 Feb 10;15(7):3098-3121. doi: 10.7150/thno.107856. eCollection 2025.
8
A Cancer Nanovaccine for Co-Delivery of Peptide Neoantigens and Optimized Combinations of STING and TLR4 Agonists.
ACS Nano. 2024 Mar 5;18(9):6845-6862. doi: 10.1021/acsnano.3c04471. Epub 2024 Feb 22.
9
Research progress on emulsion vaccine adjuvants.
Heliyon. 2024 Jan 12;10(3):e24662. doi: 10.1016/j.heliyon.2024.e24662. eCollection 2024 Feb 15.
10
Robust anti-tumor T cell response with efficient intratumoral infiltration by nanodisc cancer immunotherapy.
Adv Ther (Weinh). 2020 Sep;3(9). doi: 10.1002/adtp.202000094. Epub 2020 Jun 23.

本文引用的文献

2
Synthetic high-density lipoprotein nanodisks for targeted withalongolide delivery to adrenocortical carcinoma.
Int J Nanomedicine. 2017 Sep 6;12:6581-6594. doi: 10.2147/IJN.S140591. eCollection 2017.
5
Effect of size and pegylation of liposomes and peptide-based synthetic lipoproteins on tumor targeting.
Nanomedicine. 2017 Aug;13(6):1869-1878. doi: 10.1016/j.nano.2017.04.009. Epub 2017 Apr 18.
6
Designer vaccine nanodiscs for personalized cancer immunotherapy.
Nat Mater. 2017 Apr;16(4):489-496. doi: 10.1038/nmat4822. Epub 2016 Dec 26.
7
Synthetic high-density lipoproteins for delivery of 10-hydroxycamptothecin.
Int J Nanomedicine. 2016 Nov 22;11:6229-6238. doi: 10.2147/IJN.S112835. eCollection 2016.
8
Toll-like receptors: the swiss army knife of immunity and vaccine development.
Clin Transl Immunology. 2016 May 20;5(5):e85. doi: 10.1038/cti.2016.22. eCollection 2016 May.
9
Artificial bacterial biomimetic nanoparticles synergize pathogen-associated molecular patterns for vaccine efficacy.
Biomaterials. 2016 Aug;97:85-96. doi: 10.1016/j.biomaterials.2016.03.039. Epub 2016 Apr 1.
10
Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Jan;9(1). doi: 10.1002/wnan.1403. Epub 2016 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验