Suppr超能文献

奖励学习信号的可解码性预测情绪波动。

Decodability of Reward Learning Signals Predicts Mood Fluctuations.

机构信息

Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, UK.

Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, UK.

出版信息

Curr Biol. 2018 May 7;28(9):1433-1439.e7. doi: 10.1016/j.cub.2018.03.038.

Abstract

Our mood often fluctuates without warning. Recent accounts propose that these fluctuations might be preceded by changes in how we process reward. According to this view, the degree to which reward improves our mood reflects not only characteristics of the reward itself (e.g., its magnitude) but also how receptive to reward we happen to be. Differences in receptivity to reward have been suggested to play an important role in the emergence of mood episodes in psychiatric disorders [1-16]. However, despite substantial theory, the relationship between reward processing and daily fluctuations of mood has yet to be tested directly. In particular, it is unclear whether the extent to which people respond to reward changes from day to day and whether such changes are followed by corresponding shifts in mood. Here, we use a novel mobile-phone platform with dense data sampling and wearable heart-rate and electroencephalographic sensors to examine mood and reward processing over an extended period of one week. Subjects regularly performed a trial-and-error choice task in which different choices were probabilistically rewarded. Subjects' choices revealed two complementary learning processes, one fast and one slow. Reward prediction errors [17, 18] indicative of these two processes were decodable from subjects' physiological responses. Strikingly, more accurate decodability of prediction-error signals reflective of the fast process predicted improvement in subjects' mood several hours later, whereas more accurate decodability of the slow process' signals predicted better mood a whole day later. We conclude that real-life mood fluctuations follow changes in responsivity to reward at multiple timescales.

摘要

我们的情绪经常毫无预警地波动。最近有研究表明,这些波动可能是我们处理奖励的方式发生变化的前兆。根据这一观点,奖励改善情绪的程度不仅反映了奖励本身的特征(例如,其大小),还反映了我们对奖励的接受程度。接受奖励的差异被认为在精神障碍中情绪发作的出现中起着重要作用[1-16]。然而,尽管有大量的理论,奖励处理与情绪的日常波动之间的关系尚未得到直接检验。特别是,人们对奖励的反应程度是否每天都在变化,以及这种变化是否会导致情绪相应的变化,目前还不清楚。在这里,我们使用一种新型的移动电话平台,该平台具有密集的数据采样和可穿戴的心率和脑电图传感器,以在一周的时间内检查情绪和奖励处理。被试定期进行试错选择任务,不同的选择会有概率得到奖励。被试的选择揭示了两种互补的学习过程,一种快速,一种缓慢。奖励预测误差[17,18]表明这两个过程可以从被试的生理反应中解码出来。引人注目的是,反映快速过程的预测误差信号的解码准确性越高,几个小时后被试的情绪就会越好,而反映缓慢过程的信号的解码准确性越高,一天后被试的情绪就会越好。我们的结论是,现实生活中的情绪波动是随着对奖励的反应性在多个时间尺度上的变化而发生的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23e3/5954908/6adc599dd95c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验