Suppr超能文献

铜绿假单胞菌模型的抗生素联合疗效(ACE)网络。

Antibiotic combination efficacy (ACE) networks for a Pseudomonas aeruginosa model.

机构信息

Evolutionary Ecology and Genetics, Zoological Institute, Kiel, Germany.

Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom.

出版信息

PLoS Biol. 2018 Apr 30;16(4):e2004356. doi: 10.1371/journal.pbio.2004356. eCollection 2018 Apr.

Abstract

The spread of antibiotic resistance is always a consequence of evolutionary processes. The consideration of evolution is thus key to the development of sustainable therapy. Two main factors were recently proposed to enhance long-term effectiveness of drug combinations: evolved collateral sensitivities between the drugs in a pair and antagonistic drug interactions. We systematically assessed these factors by performing over 1,600 evolution experiments with the opportunistic nosocomial pathogen Pseudomonas aeruginosa in single- and multidrug environments. Based on the growth dynamics during these experiments, we reconstructed antibiotic combination efficacy (ACE) networks as a new tool for characterizing the ability of the tested drug combinations to constrain bacterial survival as well as drug resistance evolution across time. Subsequent statistical analysis of the influence of the factors on ACE network characteristics revealed that (i) synergistic drug interactions increased the likelihood of bacterial population extinction-irrespective of whether combinations were compared at the same level of inhibition or not-while (ii) the potential for evolved collateral sensitivities between 2 drugs accounted for a reduction in bacterial adaptation rates. In sum, our systematic experimental analysis allowed us to pinpoint 2 complementary determinants of combination efficacy and to identify specific drug pairs with high ACE scores. Our findings can guide attempts to further improve the sustainability of antibiotic therapy by simultaneously reducing pathogen load and resistance evolution.

摘要

抗生素耐药性的传播始终是进化过程的结果。因此,考虑进化是制定可持续治疗方法的关键。最近提出了两个主要因素来增强药物组合的长期有效性:药物对之间进化产生的附带敏感性和拮抗药物相互作用。我们通过在单一和多药物环境中对机会性病原体铜绿假单胞菌进行了超过 1600 次的进化实验,系统地评估了这些因素。基于这些实验中的生长动态,我们重建了抗生素组合疗效(ACE)网络,作为一种新工具来描述测试的药物组合在限制细菌存活和药物耐药性随时间演变方面的能力。随后对这些因素对 ACE 网络特征的影响进行的统计分析表明,(i)协同药物相互作用增加了细菌种群灭绝的可能性-无论组合是否在相同的抑制水平上进行比较-而(ii)两种药物之间进化产生的附带敏感性的潜力降低了细菌的适应率。总之,我们的系统实验分析使我们能够确定组合疗效的两个互补决定因素,并确定具有高 ACE 评分的特定药物对。我们的发现可以指导通过同时降低病原体负荷和耐药性进化来进一步提高抗生素治疗可持续性的尝试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c5/5945231/474e1bca2484/pbio.2004356.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验