Suppr超能文献

重建 PET 图像的 Gamma 特征:对 ROI 分析的影响。

The Gamma Characteristic of Reconstructed PET Images: Implications for ROI Analysis.

出版信息

IEEE Trans Med Imaging. 2018 May;37(5):1092-1102. doi: 10.1109/TMI.2017.2770147.

Abstract

The basic emission process associated with positron emission tomography (PET) imaging is Poisson in nature. Reconstructed images inherit some aspects of this-regional variability is typically proportional to the regional mean. Iterative reconstruction using expectation-maximization (EM), widely used in clinical imaging now, imposes positivity constraints that impact noise properties. This paper is motivated by the analysis of data from a physical phantom study of a PET/CT scanner in routine clinical use. Both traditional filtered back-projection (FBP) and EM reconstructions of the images are considered. FBP images are quite Gaussian, but the EM reconstructions exhibit Gamma-like skewness. The Gamma structure has implications for how reconstructed PET images might be processed statistically. Post-reconstruction inference-model fitting and diagnostics for regions of interest are of particular interest. Although the relevant Gamma parameterization is not within the framework of generalized linear models (GLM), iteratively re-weighted least squares (IRLS) techniques, which are often used to find the maximum likelihood estimates of a GLM, can be adapted for analysis in this setting. This paper highlights the use of a Gamma-based probability transform in producing normalized residuals as model diagnostics. The approach is demonstrated for quality assurance analyses associated with physical phantom studies-recovering estimates of local bias and variance characteristics in an operational scanner. Numerical simulations show that when the Gamma assumption is reasonable, gains in efficiency are obtained. This paper shows that the adaptation of standard analysis methods to accommodate the Gamma structure is straightforward and beneficial.

摘要

正电子发射断层扫描(PET)成像的基本发射过程在本质上是泊松的。重建图像继承了这一过程的某些方面——区域变异性通常与区域平均值成正比。现在广泛应用于临床成像的迭代重建使用期望最大化(EM)方法,它施加了正约束,从而影响了噪声特性。本文的动机是对常规临床使用的 PET/CT 扫描仪物理体模研究的数据进行分析。考虑了传统的滤波反投影(FBP)和 EM 重建的图像。FBP 图像非常符合高斯分布,但 EM 重建的图像呈现出类似伽马的偏态。伽马结构对重建 PET 图像如何进行统计处理具有影响。特别感兴趣的是对感兴趣区域的后重建推断模型拟合和诊断。虽然相关的伽马参数化不在广义线性模型(GLM)的框架内,但迭代重加权最小二乘法(IRLS)技术通常用于找到 GLM 的最大似然估计,可以适应这种情况下的分析。本文强调了在产生作为模型诊断的归一化残差时使用基于伽马的概率变换。该方法已针对与物理体模研究相关的质量保证分析进行了演示,以恢复在运行扫描仪中的局部偏差和方差特征的估计值。数值模拟表明,当伽马假设合理时,效率会提高。本文表明,通过适应标准分析方法来适应伽马结构是直接且有益的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验