Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
Life Science and Technology College and Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China.
Plant Biotechnol J. 2018 Dec;16(12):2063-2076. doi: 10.1111/pbi.12939. Epub 2018 May 24.
Mitochondrial alternative oxidase (AOX) is involved in a large number of plant physiological processes, such as growth, development and stress responses; however, the exact role of AOX in response to drought remains unclear. In our study, we provide solid evidences that the activated AOX capacity positively involved in ethylene-induced drought tolerance, in tomato (Solanum lycopersicum), accompanied by the changing level of hydrogen peroxide (H O ) and autophagy. In AOX1a-RNAi plants, the ethylene-induced drought tolerance was aggravated and associated with decreasing level of autophagy. The H O level was relatively higher in AOX1a-RNAi plants, whereas it was lower in AOX1a-overexpressing (35S-AOX1a-OE) plants after 1-(aminocarbonyl)-1-cyclopropanecarboxylic acid (ACC) pretreatment in the 14th day under drought stress. Interestingly, the accumulation of autophagosome was accompanied by the changing level of reactive oxygen species (ROS) in AOX transgenic tomato under drought stress whether or not pretreated with ACC. Pharmacological scavenging of H O accumulation in AOX1a-RNAi (aox19) stimulated autophagy acceleration under drought stress, and it seems that AOX-dependent ROS signalling is critical in triggering autophagy. Lower levels of ROS signalling positively induce autophagy activity, whereas higher ROS level would lead to rapid programmed cell death (PCD), especially in ethylene-mediated drought tolerance. Moreover, ethylene-induced autophagy during drought stress also can be through ERF5 binding to the promoters of ATG8d and ATG18h. These results demonstrated that AOX plays an essential role in ethylene-induced drought tolerance and also played important roles in mediating autophagy generation via balancing ROS level.
线粒体交替氧化酶(AOX)参与了许多植物生理过程,如生长、发育和应激反应;然而,AOX 在应对干旱方面的确切作用仍不清楚。在我们的研究中,我们提供了确凿的证据,表明活性 AOX 能力积极参与乙烯诱导的耐旱性,在番茄(Solanum lycopersicum)中,伴随着过氧化氢(H2O2)和自噬水平的变化。在 AOX1a-RNAi 植物中,乙烯诱导的耐旱性加重,与自噬水平下降有关。在干旱胁迫第 14 天用 1-(氨甲酰基)-1-环丙烷羧酸(ACC)预处理后,AOX1a-RNAi 植物中的 H2O2 水平相对较高,而在 AOX1a 过表达(35S-AOX1a-OE)植物中则较低。有趣的是,在干旱胁迫下,无论是否用 ACC 预处理,AOX 转基因番茄中自噬体的积累伴随着活性氧(ROS)水平的变化。在 AOX1a-RNAi(aox19)中,通过药理学清除 H2O2 积累刺激了干旱胁迫下自噬的加速,似乎 AOX 依赖的 ROS 信号在触发自噬中至关重要。较低水平的 ROS 信号正向诱导自噬活性,而较高的 ROS 水平会导致快速程序性细胞死亡(PCD),特别是在乙烯介导的耐旱性中。此外,干旱胁迫下乙烯诱导的自噬也可以通过 ERF5 结合 ATG8d 和 ATG18h 的启动子来实现。这些结果表明,AOX 在乙烯诱导的耐旱性中起着重要作用,并且在通过平衡 ROS 水平介导自噬发生方面也起着重要作用。