具有优异压缩模量和缓慢生物吸收的丝素微颗粒支架,可有效促进骨再生。
Silk fibroin micro-particle scaffolds with superior compression modulus and slow bioresorption for effective bone regeneration.
机构信息
Polymer Science and Engineering Department, National Chemical Laboratory, Pune, 411008, India.
BiolMed Innovations Pvt. Ltd., 100, NCL Innovation Park, Dr. Homi Bhabha Road, Pune, 411008, India.
出版信息
Sci Rep. 2018 May 8;8(1):7235. doi: 10.1038/s41598-018-25643-x.
Silk fibroin (SF), a natural polymer produced by Bombyx mori silkworms, has been extensively explored to prepare porous scaffolds for tissue engineering applications. Here, we demonstrate, a scaffold made of SF, which exhibits compression modulus comparable to natural cancellous bone while retaining the appropriate porosities and interconnected pore architecture. The scaffolds also exhibit high resistance to in-vitro proteolytic degradation due to the dominant beta sheet conformation of the SF protein. Additionally, the scaffolds are prepared using a simple method of microparticle aggregation. We also demonstrate, for the first time, a method to prepare SF micro-particles using a Hexafluoroisopropanol-Methanol solvent-coagulant combination. SF microparticles obtained using this method are monodisperse, spherical, non-porous and extremely crystalline. These micro-particles have been further aggregated together to form a 3D scaffold. The aggregation is achieved by random packing of these microparticles and fusing them together using a dilute SF solution. Preliminary in-vitro cell culture and in-vivo implantation studies demonstrate that the scaffolds are biocompatible and they exhibit the appropriate early markers, making them promising candidates for bone regeneration.
丝素蛋白(SF)是由家蚕产生的天然聚合物,已被广泛用于制备用于组织工程应用的多孔支架。在这里,我们展示了一种由 SF 制成的支架,其压缩模量可与天然松质骨相媲美,同时保持适当的孔隙率和相互连通的孔结构。由于 SF 蛋白的主导β片构象,支架还具有高耐体外蛋白水解降解的能力。此外,该支架采用简单的微粒子聚集方法制备。我们还首次展示了一种使用六氟异丙醇-甲醇溶剂-凝结剂组合制备 SF 微球的方法。使用该方法获得的 SF 微球呈单分散性、球形、无孔且极结晶。这些微球进一步聚集在一起形成 3D 支架。通过这些微球的随机堆积和使用稀 SF 溶液将它们融合在一起来实现聚集。初步的体外细胞培养和体内植入研究表明,该支架具有生物相容性,并表现出适当的早期标志物,使其成为骨再生的有前途的候选物。