Malhotra Meenakshi, Sekar Thillai Veerapazham, Ananta Jeyarama S, Devulapally Rammohan, Afjei Rayhaneh, Babikir Husam A, Paulmurugan Ramasamy, Massoud Tarik F
Laboratory for Experimental and Molecular Neuroimaging (LEMNI), Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA.
Cellular Pathway Imaging Laboratory (CPIL), Molecular Imaging Program at Stanford, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
Oncotarget. 2018 Apr 20;9(30):21478-21494. doi: 10.18632/oncotarget.25135.
Temozolomide (TMZ) chemotherapy for glioblastoma (GBM) is generally well tolerated at standard doses but it can cause side effects. GBMs overexpress microRNA-21 and microRNA-10b, two known oncomiRs that promote cancer development, progression and resistance to drug treatment. We hypothesized that systemic injection of antisense microRNAs (antagomiR-21 and antagomiR-10b) encapsulated in cRGD-tagged PEG-PLGA nanoparticles would result in high cellular delivery of intact functional antagomiRs, with consequent efficient therapeutic response and increased sensitivity of GBM cells to lower doses of TMZ. We synthesized both targeted and non-targeted nanoparticles, and characterized them for size, surface charge and encapsulation efficiency of antagomiRs. When using targeted nanoparticles in U87MG and Ln229 GBM cells, we showed higher uptake-associated improvement in sensitivity of these cells to lower concentrations of TMZ in medium. Co-inhibition of microRNA-21 and microRNA-10b reduced the number of viable cells and increased cell cycle arrest at G2/M phase upon TMZ treatment. We found a significant increase in expression of key target genes for microRNA-21 and microRNA-10b upon using targeted versus non-targeted nanoparticles. There was also significant reduction in tumor volume when using TMZ after pre-treatment with loaded nanoparticles in human GBM cell xenografts in mice. targeted nanoparticles plus different doses of TMZ showed a significant therapeutic response even at the lowest dose of TMZ, indicating that preloading cells with antagomiR-21 and antagomiR-10b increases cellular chemosensitivity towards lower TMZ doses. Future clinical applications of this combination therapy may result in improved GBM response by using lower doses of TMZ and reducing nonspecific treatment side effects.
替莫唑胺(TMZ)用于治疗胶质母细胞瘤(GBM)时,标准剂量通常耐受性良好,但也可能引起副作用。GBM过度表达微小RNA-21和微小RNA-10b,这两种已知的致癌微小RNA可促进癌症发展、进展及对药物治疗的耐药性。我们推测,经环化RGD标记的聚乙二醇-聚乳酸-羟基乙酸共聚物(PEG-PLGA)纳米颗粒包裹的反义微小RNA(抗微小RNA-21和抗微小RNA-10b)全身注射,将导致完整功能性抗微小RNA的高效细胞递送,从而产生有效的治疗反应,并增加GBM细胞对较低剂量TMZ的敏感性。我们合成了靶向和非靶向纳米颗粒,并对其大小、表面电荷和抗微小RNA的包封效率进行了表征。在U87MG和Ln229 GBM细胞中使用靶向纳米颗粒时,我们发现这些细胞对培养基中较低浓度TMZ的敏感性因摄取增加而提高。微小RNA-21和微小RNA-10b的共同抑制减少了活细胞数量,并增加了TMZ处理后G2/M期的细胞周期停滞。我们发现,与非靶向纳米颗粒相比,使用靶向纳米颗粒后,微小RNA-21和微小RNA-10b的关键靶基因表达显著增加。在用负载纳米颗粒预处理小鼠体内人GBM细胞异种移植瘤后再使用TMZ,肿瘤体积也显著减小。靶向纳米颗粒加不同剂量的TMZ即使在最低剂量的TMZ时也显示出显著的治疗反应,这表明用抗微小RNA-21和抗微小RNA-10b预加载细胞可增加细胞对较低TMZ剂量的化学敏感性。这种联合疗法未来的临床应用可能通过使用较低剂量的TMZ并减少非特异性治疗副作用来改善GBM的反应。