CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, China.
Nat Chem Biol. 2018 Jul;14(7):664-670. doi: 10.1038/s41589-018-0053-0. Epub 2018 May 21.
Introduction of innovative biocatalytic processes offers great promise for applications in green chemistry. However, owing to limited catalytic performance, the enzymes harvested from nature's biodiversity often need to be improved for their desired functions by time-consuming iterative rounds of laboratory evolution. Here we describe the use of structure-based computational enzyme design to convert Bacillus sp. YM55-1 aspartase, an enzyme with a very narrow substrate scope, to a set of complementary hydroamination biocatalysts. The redesigned enzymes catalyze asymmetric addition of ammonia to substituted acrylates, affording enantiopure aliphatic, polar and aromatic β-amino acids that are valuable building blocks for the synthesis of pharmaceuticals and bioactive compounds. Without a requirement for further optimization by laboratory evolution, the redesigned enzymes exhibit substrate tolerance up to a concentration of 300 g/L, conversion up to 99%, β-regioselectivity >99% and product enantiomeric excess >99%. The results highlight the use of computational design to rapidly adapt an enzyme to industrially viable reactions.
介绍创新的生物催化过程为绿色化学的应用提供了巨大的前景。然而,由于催化性能有限,从自然界生物多样性中提取的酶往往需要通过耗时的实验室反复进化来改进其所需的功能。在这里,我们描述了使用基于结构的计算酶设计将 Bacillus sp. YM55-1 天冬氨酸酶(一种底物谱非常狭窄的酶)转化为一组互补的氨羟化生物催化剂。经过重新设计的酶可以催化氨不对称地加成到取代的丙烯酰胺上,得到对映体纯的脂肪族、极性和芳香族β-氨基酸,这些氨基酸是合成药物和生物活性化合物的有价值的构建块。无需进一步通过实验室进化进行优化,重新设计的酶在 300 g/L 的浓度下表现出良好的底物耐受性,转化率高达 99%,β-区域选择性>99%,产物对映体过量>99%。这些结果突出了计算设计在快速使酶适应工业可行反应方面的应用。