School of Information Science Japan, Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.
Swartz Center for Computational Neuroscience, Institute of Neural Computation University of California San Diego, 9500 Gilman Drive # 0559, La Jolla, CA, 92093-0559, USA.
Sci Rep. 2018 May 29;8(1):8205. doi: 10.1038/s41598-018-26609-9.
Recent developments in EEG recording and signal processing have made it possible to record in an unconstrained, natural movement task, therefore EEG provides a promising approach to understanding the neural mechanisms of upper-limb reaching control. This study specifically addressed how EEG dynamics in the time domain encoded finger movement directions (directional tuning) and posture dependence (movement reference frames) by applying representational similarity analysis. High-density EEG covering the entire scalp was recorded while participants performed eight-directional, center-out reaching movements, thereby allowing us to explore directional selectivity of EEG sources over the brain beyond somatosensory areas. A majority of the source processes exhibited statistically significant directional tuning during peri-movement periods. In addition, directional tuning curves shifted systematically when the shoulder angle was rotated to perform the task within a more laterally positioned workspace, the degree of tuning curve rotation falling between that predicted by models assuming extrinsic and shoulder-based reference frames. We conclude that temporal dynamics of neural mechanisms for motor control can be studied noninvasively in humans using high-density EEG and that directional sensitivity of motor and non-motor processing is not limited within the sensorimotor areas but extends to the whole brain areas.
脑电记录和信号处理的最新进展使得在不受限制的自然运动任务中进行记录成为可能,因此脑电为理解上肢运动控制的神经机制提供了一个很有前景的方法。本研究通过应用表示相似性分析,专门研究了脑电时间域动力学如何编码手指运动方向(方向调谐)和姿势依赖性(运动参照系)。在参与者进行八向、中心外伸运动时,记录了覆盖整个头皮的高密度脑电,从而使我们能够探索脑源的方向性选择性,超越躯体感觉区域。在运动前期间,大多数源过程表现出具有统计学意义的方向调谐。此外,当肩部角度旋转以在更侧向定位的工作空间内执行任务时,方向调谐曲线会系统地移动,调谐曲线的旋转程度介于假设外在和基于肩部的参照系的模型预测之间。我们得出结论,使用高密度脑电可以在人类中进行非侵入性的运动控制神经机制的时间动力学研究,并且运动和非运动处理的方向敏感性不仅限于躯体感觉区域,而是扩展到整个大脑区域。