Suppr超能文献

神经界面用材料、器件和系统的最新进展

Recent Advances in Materials, Devices, and Systems for Neural Interfaces.

机构信息

Department of Electrical and Computer Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA.

Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana Champaign, Northwestern University, Evanston, IL, 60208, USA.

出版信息

Adv Mater. 2018 Jul;30(30):e1800534. doi: 10.1002/adma.201800534. Epub 2018 May 31.

Abstract

Technologies capable of establishing intimate, long-lived optical/electrical interfaces to neural systems will play critical roles in neuroscience research and in the development of nonpharmacological treatments for neurological disorders. The development of high-density interfaces to 3D populations of neurons across entire tissue systems in living animals, including human subjects, represents a grand challenge for the field, where advanced biocompatible materials and engineered structures for electrodes and light emitters will be essential. This review summarizes recent progress in these directions, with an emphasis on the most promising demonstrated concepts, materials, devices, and systems. The article begins with an overview of electrode materials with enhanced electrical and/or mechanical performance, in forms ranging from planar films, to micro/nanostructured surfaces, to 3D porous frameworks and soft composites. Subsequent sections highlight integration with active materials and components for multiplexed addressing, local amplification, wireless data transmission, and power harvesting, with multimodal operation in soft, shape-conformal systems. These advances establish the foundations for scalable architectures in optical/electrical neural interfaces of the future, where a blurring of the lines between biotic and abiotic systems will catalyze profound progress in neuroscience research and in human health/well-being.

摘要

能够与神经系统建立亲密、持久的光学/电学接口的技术将在神经科学研究以及开发非药物治疗神经疾病方面发挥关键作用。在活体动物(包括人类受试者)的整个组织系统中,实现对 3D 神经元群体的高密度接口是该领域的一个重大挑战,其中先进的生物相容性材料和用于电极和光源的工程结构将是必不可少的。这篇综述总结了这些方向的最新进展,重点介绍了最有前途的已证明概念、材料、器件和系统。文章首先概述了具有增强的电性能和/或机械性能的电极材料,其形式从平面薄膜到微/纳米结构表面,再到 3D 多孔框架和软复合材料。随后的部分强调了与用于复用寻址、局部放大、无线数据传输和能量收集的有源材料和组件的集成,以及在软、形状顺应系统中的多模态操作。这些进展为未来的光电神经接口的可扩展架构奠定了基础,生物和非生物系统之间界限的模糊将促进神经科学研究和人类健康/福祉的重大进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验