Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA.
Lab Chip. 2018 Jul 10;18(14):2065-2076. doi: 10.1039/c8lc00299a.
This work presents a microfluidics-integrated label-free flow cytometry-on-a-CMOS platform for the characterization of the cytoplasm dielectric properties at microwave frequencies. Compared with MHz impedance cytometers, operating at GHz frequencies offers direct intracellular permittivity probing due to electric fields penetrating through the cellular membrane. To overcome the detection challenges at high frequencies, the spectrometer employs on-chip oscillator-based sensors, which embeds simultaneous frequency generation, electrode excitation, and signal detection capabilities. By employing an injection-locking phase-detection technique, the spectrometer offers state-of-the-art sensitivity, achieving a less than 1 aFrms capacitance detection limit (or 5 ppm in frequency-shift) at a 100 kHz noise filtering bandwidth, enabling high throughput (>1k cells per s), with a measured cellular SNR of more than 28 dB. With CMOS/microfluidics co-design, we distribute four sensing channels at 6.5, 11, 17.5, and 30 GHz in an arrayed format whereas the frequencies are selected to center around the water relaxation frequency at 18 GHz. An issue in the integration of CMOS and microfluidics due to size mismatch is also addressed through introducing a cost-efficient epoxy-molding technique. With 3-D hydrodynamic focusing microfluidics, we perform characterization on four different cell lines including two breast cell lines (MCF-10A and MDA-MB-231) and two leukocyte cell lines (K-562 and THP-1). After normalizing the higher frequency signals to the 6.5 GHz ones, the size-independent dielectric opacity shows a differentiable distribution at 17.5 GHz between normal (0.905 ± 0.160, mean ± std.) and highly metastatic (1.033 ± 0.107) breast cells with p ≪ 0.001.
这项工作提出了一种基于微流控的无标记流式细胞术与 CMOS 集成的平台,用于在微波频率下对细胞质介电特性进行表征。与工作在兆赫兹频率的阻抗细胞仪相比,工作在千兆赫兹频率下的仪器由于电场可以穿透细胞膜,因此可以直接进行细胞内介电常数的探测。为了克服高频检测的挑战,该光谱仪采用了基于片上振荡器的传感器,它集成了同时产生频率、电极激励和信号检测的功能。通过采用注入锁定相位检测技术,该光谱仪提供了卓越的灵敏度,在 100 kHz 噪声滤波带宽下,实现了低于 1 aFrms 电容检测极限(或 5 ppm 的频率漂移),从而实现了高通量(>1k 个细胞/秒),细胞信噪比(SNR)超过 28 dB。通过 CMOS/微流控的协同设计,我们在阵列格式中分配了四个传感通道,频率分别为 6.5、11、17.5 和 30 GHz,而这些频率选择集中在 18 GHz 的水弛豫频率周围。由于尺寸不匹配,CMOS 和微流控的集成存在一个问题,我们通过引入一种经济高效的环氧模塑技术来解决这个问题。采用 3D 流体动力学聚焦微流控技术,我们对包括两种乳腺癌细胞系(MCF-10A 和 MDA-MB-231)和两种白细胞细胞系(K-562 和 THP-1)在内的四种不同细胞系进行了特性分析。将较高频率的信号归一化为 6.5 GHz 信号后,大小无关的介电不透明度在 17.5 GHz 处显示出正常(0.905 ± 0.160,均值 ± 标准差)和高度转移性(1.033 ± 0.107)乳腺癌细胞之间的可区分分布,p ≪ 0.001。