Suppr超能文献

E-I 平衡是自主神经网络中持续的赫布学习自然产生的。

E-I balance emerges naturally from continuous Hebbian learning in autonomous neural networks.

机构信息

Johann-Wolfgang-Goethe University Frankfurt, Frankfurt, 60323, Germany.

Computational and Biological Learning Lab, Dept. of Engineering, University of Cambridge, Cambridge, UK.

出版信息

Sci Rep. 2018 Jun 12;8(1):8939. doi: 10.1038/s41598-018-27099-5.

Abstract

Spontaneous brain activity is characterized in part by a balanced asynchronous chaotic state. Cortical recordings show that excitatory (E) and inhibitory (I) drivings in the E-I balanced state are substantially larger than the overall input. We show that such a state arises naturally in fully adapting networks which are deterministic, autonomously active and not subject to stochastic external or internal drivings. Temporary imbalances between excitatory and inhibitory inputs lead to large but short-lived activity bursts that stabilize irregular dynamics. We simulate autonomous networks of rate-encoding neurons for which all synaptic weights are plastic and subject to a Hebbian plasticity rule, the flux rule, that can be derived from the stationarity principle of statistical learning. Moreover, the average firing rate is regulated individually via a standard homeostatic adaption of the bias of each neuron's input-output non-linear function. Additionally, networks with and without short-term plasticity are considered. E-I balance may arise only when the mean excitatory and inhibitory weights are themselves balanced, modulo the overall activity level. We show that synaptic weight balance, which has been considered hitherto as given, naturally arises in autonomous neural networks when the here considered self-limiting Hebbian synaptic plasticity rule is continuously active.

摘要

自发性脑活动的特征部分在于平衡的异步混沌状态。皮层记录表明,在 E-I 平衡状态下,兴奋性(E)和抑制性(I)驱动实际上比整体输入大得多。我们表明,这种状态在完全自适应的网络中自然产生,这些网络是确定性的、自主激活的,不受随机外部或内部驱动的影响。兴奋性和抑制性输入之间的暂时不平衡会导致大但短暂的活动爆发,从而稳定不规则的动力学。我们模拟了自主的神经元网络,其中所有的突触权重都是可塑的,并受到赫布可塑性规则的约束,该规则可以从统计学习的平稳性原理中推导出来。此外,平均放电率通过每个神经元输入-输出非线性函数的偏置的标准同型适应来单独调节。此外,还考虑了具有和不具有短期可塑性的网络。只有当平均兴奋性和抑制性权重本身在整体活动水平上平衡时,E-I 平衡才会出现。我们表明,当这里考虑的自我限制的赫布突触可塑性规则持续活跃时,在自主神经网络中,作为迄今被认为是给定的突触权重平衡自然出现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验