Suppr超能文献

平衡网络中瞬态动力学的最优控制支持复杂运动的产生。

Optimal control of transient dynamics in balanced networks supports generation of complex movements.

机构信息

School of Computer and Communication Sciences and Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK.

School of Computer and Communication Sciences and Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK.

出版信息

Neuron. 2014 Jun 18;82(6):1394-406. doi: 10.1016/j.neuron.2014.04.045.

Abstract

Populations of neurons in motor cortex engage in complex transient dynamics of large amplitude during the execution of limb movements. Traditional network models with stochastically assigned synapses cannot reproduce this behavior. Here we introduce a class of cortical architectures with strong and random excitatory recurrence that is stabilized by intricate, fine-tuned inhibition, optimized from a control theory perspective. Such networks transiently amplify specific activity states and can be used to reliably execute multidimensional movement patterns. Similar to the experimental observations, these transients must be preceded by a steady-state initialization phase from which the network relaxes back into the background state by way of complex internal dynamics. In our networks, excitation and inhibition are as tightly balanced as recently reported in experiments across several brain areas, suggesting inhibitory control of complex excitatory recurrence as a generic organizational principle in cortex.

摘要

运动皮层中的神经元群体在执行肢体运动时会表现出复杂的、大振幅的暂态动力学。具有随机分配突触的传统网络模型无法再现这种行为。在这里,我们引入了一类具有强随机兴奋再现的皮质结构,通过从控制理论的角度进行优化,由复杂的精细抑制来稳定兴奋再现。这样的网络可以暂时放大特定的活动状态,并可用于可靠地执行多维运动模式。与实验观察相似,这些瞬态必须先经过稳态初始化阶段,网络通过复杂的内部动力学从该阶段松弛回背景状态。在我们的网络中,兴奋和抑制像最近在几个脑区的实验中报道的那样紧密平衡,这表明复杂兴奋再现的抑制控制是皮质中的一种通用组织原则。

相似文献

2
Bringing the dynamics of movement under control.控制运动的动态。
Neuron. 2014 Jun 18;82(6):1193-5. doi: 10.1016/j.neuron.2014.06.002.
7
Remapping the motor cortex.重新映射运动皮层。
Science. 1995 Jun 23;268(5218):1696-8. doi: 10.1126/science.7792588.
9

引用本文的文献

3
A neural manifold view of the brain.大脑的神经流形视角。
Nat Neurosci. 2025 Jul 28. doi: 10.1038/s41593-025-02031-z.

本文引用的文献

4
Analysis of the stabilized supralinear network.稳定超线性网络分析。
Neural Comput. 2013 Aug;25(8):1994-2037. doi: 10.1162/NECO_a_00472. Epub 2013 May 10.
5
Inhibition dominates sensory responses in the awake cortex.在清醒的大脑皮层中,抑制作用占主导地位。
Nature. 2013 Jan 3;493(7430):97-100. doi: 10.1038/nature11665. Epub 2012 Nov 21.
7
Two layers of neural variability.神经变异性的两个层面。
Nat Neurosci. 2012 Nov;15(11):1472-4. doi: 10.1038/nn.3247.
8
Non-normal amplification in random balanced neuronal networks.随机平衡神经网络中的非正态放大
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011909. doi: 10.1103/PhysRevE.86.011909. Epub 2012 Jul 11.
10
Plasticity of inhibition.抑制的可塑性。
Neuron. 2012 Sep 20;75(6):951-62. doi: 10.1016/j.neuron.2012.07.030.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验