King Abdullah University of Science and Technology (KAUST), Photonics Laboratory, Thuwal 23955-6900, Saudi Arabia.
Nanoscale. 2018 Aug 30;10(34):15980-15988. doi: 10.1039/c8nr02615g.
p-Type doping in wide bandgap and new classes of ultra-wide bandgap materials has long been a scientific and engineering problem. The challenges arise from the large activation energy of dopants and high densities of dislocations in materials. We report here, a significantly enhanced p-type conduction using high-quality AlGaN nanowires. For the first time, the hole concentration in Mg-doped AlGaN nanowires is quantified. The incorporation of Mg into AlGaN was verified by correlation with photoluminescence and Raman measurements. The open-circuit potential measurements further confirmed the p-type conductivity, while Mott-Schottky experiments measured a hole concentration of 1.3 × 1019 cm-3. These results from photoelectrochemical measurements allow us to design prototype ultraviolet (UV) light-emitting diodes (LEDs) incorporating the AlGaN quantum-disks-in-nanowire and an optimized p-type AlGaN contact layer for UV-transparency. The ∼335 nm LEDs exhibited a low turn-on voltage of 5 V with a series resistance of 32 Ω, due to the efficient p-type doping of the AlGaN nanowires. The bias-dependent Raman measurements further revealed the negligible self-heating of devices. This study provides an attractive solution to evaluate the electrical properties of AlGaN, which is applicable to other wide bandgap nanostructures. Our results are expected to open doors to new applications for wide and ultra-wide bandgap materials.
p 型掺杂在宽带隙和新型超宽带隙材料中一直是一个科学和工程问题。挑战来自于掺杂剂的高活化能和材料中高密度的位错。我们在这里报告了一种使用高质量的 AlGaN 纳米线显著增强的 p 型传导。首次定量测量了 Mg 掺杂 AlGaN 纳米线中的空穴浓度。通过与光致发光和拉曼测量的相关性,证实了 Mg 掺入 AlGaN。开路电位测量进一步证实了 p 型导电性,而 Mott-Schottky 实验测量的空穴浓度为 1.3×1019cm-3。光电化学测量的这些结果使我们能够设计原型紫外(UV)发光二极管(LED),其中包括 AlGaN 量子盘在纳米线中和优化的 p 型 AlGaN 接触层以实现 UV 透明度。由于 AlGaN 纳米线的高效 p 型掺杂,该约 335nm 的 LED 表现出 5V 的低开启电压和 32Ω的串联电阻。偏置依赖的拉曼测量进一步揭示了器件的自加热可忽略不计。这项研究为评估 AlGaN 的电性能提供了一个有吸引力的解决方案,该解决方案适用于其他宽带隙纳米结构。我们的结果有望为宽能带隙和超宽能带隙材料的新应用开辟道路。