Suppr超能文献

形态控制合成用于癌症光疗的铑纳米粒子。

Morphology-Controlled Synthesis of Rhodium Nanoparticles for Cancer Phototherapy.

机构信息

Center for RNA Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.

Department of Chemistry , Kwangwoon University , 20, Gwangwoon-ro , Nowon-gu, Seoul 01897 , Republic of Korea.

出版信息

ACS Nano. 2018 Jul 24;12(7):6997-7008. doi: 10.1021/acsnano.8b02698. Epub 2018 Jun 22.

Abstract

Rhodium nanoparticles are promising transition metal nanocatalysts for electrochemical and synthetic organic chemistry applications. However, notwithstanding their potential, to date, Rh nanoparticles have not been utilized for biological applications; there has been no cytotoxicity study of Rh reported in the literature. In this regard, the absence of a facile and controllable synthetic strategy of Rh nanostructures with various sizes and morphologies might be responsible for the lack of progress in this field. Herein, we have developed a synthetic strategy for Rh nanostructures with controllable morphology through an inverse-directional galvanic replacement reaction. Three types of Rh-based nanostructures-nanoshells, nanoframes, and porous nanoplates-were successfully synthesized. A plausible synthetic mechanism based on thermodynamic considerations has also been proposed. The cytotoxicity, surface functionalization, and photothermal therapeutic effect of manufactured Rh nanostructures were systematically investigated to reveal their potential for in vitro and in vivo biological applications. Considering the comparable behavior of porous Rh nanoplates to that of gold nanostructures that are widely used in nanomedicine, the present study introduces Rh-based nanostructures into the field of biological research.

摘要

铑纳米颗粒是一种很有前途的过渡金属纳米催化剂,可用于电化学和合成有机化学应用。然而,尽管具有这种潜力,但迄今为止,铑纳米颗粒尚未用于生物应用;文献中没有报道过铑的细胞毒性研究。在这方面,缺乏一种简便可控的合成策略,无法制备具有各种尺寸和形态的铑纳米结构,这可能是该领域进展缓慢的原因。在此,我们通过逆向电置换反应开发了一种具有可控形态的铑纳米结构的合成策略。成功合成了三种基于 Rh 的纳米结构-纳米壳、纳米框架和多孔纳米板。还提出了一种基于热力学考虑的合理合成机制。系统研究了所制备的 Rh 纳米结构的细胞毒性、表面功能化和光热治疗效果,以揭示它们在体外和体内生物应用中的潜力。考虑到多孔 Rh 纳米板的行为与广泛应用于纳米医学的金纳米结构相似,本研究将基于 Rh 的纳米结构引入生物研究领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验