Suppr超能文献

人工智能在放射肿瘤学中的应用:是否会引发全专业范围的颠覆性变革?

Artificial intelligence in radiation oncology: A specialty-wide disruptive transformation?

机构信息

Oregon Health & Science University, Portland, USA; VA Portland Health Care System, Portland, USA.

University of California San Francisco, San Francisco, USA.

出版信息

Radiother Oncol. 2018 Dec;129(3):421-426. doi: 10.1016/j.radonc.2018.05.030. Epub 2018 Jun 12.

Abstract

Artificial intelligence (AI) is emerging as a technology with the power to transform established industries, and with applications from automated manufacturing to advertising and facial recognition to fully autonomous transportation. Advances in each of these domains have led some to call AI the "fourth" industrial revolution [1]. In healthcare, AI is emerging as both a productive and disruptive force across many disciplines. This is perhaps most evident in Diagnostic Radiology and Pathology, specialties largely built around the processing and complex interpretation of medical images, where the role of AI is increasingly seen as both a boon and a threat. In Radiation Oncology as well, AI seems poised to reshape the specialty in significant ways, though the impact of AI has been relatively limited at present, and may rightly seem more distant to many, given the predominantly interpersonal and complex interventional nature of the specialty. In this overview, we will explore the current state and anticipated future impact of AI on Radiation Oncology, in detail, focusing on key topics from multiple stakeholder perspectives, as well as the role our specialty may play in helping to shape the future of AI within the larger spectrum of medicine.

摘要

人工智能(AI)正在成为一种具有变革现有行业能力的技术,其应用领域从自动化制造到广告、面部识别到完全自主运输。这些领域的每一项进步都使一些人将 AI 称为“第四次”工业革命[1]。在医疗保健领域,AI 正在成为许多学科的生产力和颠覆性力量。这在放射诊断学和病理学中最为明显,这些专业主要围绕医学图像的处理和复杂解释,AI 的作用越来越被视为既是福音,也是威胁。在放射肿瘤学中,AI 似乎也准备以重大的方式重塑该专业,尽管目前 AI 的影响相对有限,而且鉴于该专业主要是人际互动和复杂的介入性质,对许多人来说,它可能看起来更加遥远。在本篇综述中,我们将详细探讨 AI 对放射肿瘤学的当前状态和预期未来影响,重点关注来自多个利益相关者视角的关键主题,以及我们的专业可能在帮助塑造 AI 在更广泛的医学领域的未来方面所扮演的角色。

相似文献

3
Artificial Intelligence in Radiation Oncology.人工智能在放射肿瘤学中的应用。
Hematol Oncol Clin North Am. 2019 Dec;33(6):1095-1104. doi: 10.1016/j.hoc.2019.08.003. Epub 2019 Sep 11.
10
Artificial Intelligence in Radiology: Current Technology and Future Directions.放射学中的人工智能:当前技术与未来方向。
Semin Musculoskelet Radiol. 2018 Nov;22(5):540-545. doi: 10.1055/s-0038-1673383. Epub 2018 Nov 6.

引用本文的文献

5
Multicentre prospective risk analysis of a fully automated radiotherapy workflow.全自动化放射治疗工作流程的多中心前瞻性风险分析
Phys Imaging Radiat Oncol. 2025 Apr 6;34:100765. doi: 10.1016/j.phro.2025.100765. eCollection 2025 Apr.

本文引用的文献

3
Data Sharing: Convert Challenges into Opportunities.数据共享:将挑战转化为机遇。
Front Public Health. 2017 Dec 4;5:327. doi: 10.3389/fpubh.2017.00327. eCollection 2017.
4
Care for Patients, Not for Charts: A Future for Clinical Medical Physics.关爱患者,而非图表:临床医学物理的未来。
Int J Radiat Oncol Biol Phys. 2018 Jan 1;100(1):21-22. doi: 10.1016/j.ijrobp.2017.08.026. Epub 2017 Aug 26.
8
Representing Knowledge Consistently Across Health Systems.在各个卫生系统中实现知识的一致呈现。
Yearb Med Inform. 2017 Aug;26(1):139-147. doi: 10.15265/IY-2017-018. Epub 2017 Sep 11.
10
Online Adaptive Radiation Therapy.在线自适应放射治疗
Int J Radiat Oncol Biol Phys. 2017 Nov 15;99(4):994-1003. doi: 10.1016/j.ijrobp.2017.04.023. Epub 2017 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验