From the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221.
Cornell University, Department of Chemistry and Chemical Biology, Northeastern Collaborative Access Team Advanced Photon Source (NE-CAT APS), Argonne, Illinois 60439, and.
J Biol Chem. 2018 Aug 10;293(32):12350-12359. doi: 10.1074/jbc.RA118.003586. Epub 2018 Jun 15.
ADP-ribosyl-acceptor hydrolase 3 (ARH3) plays important roles in regulation of poly(ADP-ribosyl)ation, a reversible post-translational modification, and in maintenance of genomic integrity. ARH3 degrades poly(ADP-ribose) to protect cells from poly(ADP-ribose)-dependent cell death, reverses serine mono(ADP-ribosyl)ation, and hydrolyzes -acetyl-ADP-ribose, a product of Sirtuin-catalyzed histone deacetylation. ARH3 preferentially hydrolyzes -linkages attached to the anomeric C1″ of ADP-ribose; however, how ARH3 specifically recognizes and cleaves structurally diverse substrates remains unknown. Here, structures of full-length human ARH3 bound to ADP-ribose and Mg, coupled with computational modeling, reveal a dramatic conformational switch from closed to open states that enables specific substrate recognition. The glutamate flap, which blocks substrate entrance to Mg in the unliganded closed state, is ejected from the active site when substrate is bound. This closed-to-open transition significantly widens the substrate-binding channel and precisely positions the scissile 1″--linkage for cleavage while securing tightly 2″- and 3″-hydroxyls of ADP-ribose. Our collective data uncover an unprecedented structural plasticity of ARH3 that supports its specificity for the 1″--linkage in substrates and Mg-dependent catalysis.
ADP-核糖基-受体水解酶 3(ARH3)在调节多聚 ADP-核糖基化(一种可逆的翻译后修饰)和维持基因组完整性方面发挥着重要作用。ARH3 可降解多聚 ADP-核糖以保护细胞免受多聚 ADP-核糖依赖性细胞死亡的影响,逆转丝氨酸单(ADP-核糖基)化,并水解 Sirtuin 催化的组蛋白去乙酰化反应的产物 -乙酰-ADP-核糖。ARH3 优先水解与 ADP-核糖的端基 C1″相连的-β-键;然而,ARH3 如何特异性识别和切割结构多样的底物仍然未知。本研究通过全长人 ARH3 与 ADP-核糖和 Mg 结合的结构以及计算建模,揭示了从封闭到开放状态的剧烈构象转换,从而实现了特定的底物识别。在无配体的封闭状态下,谷氨酸瓣会阻止底物进入 Mg 的活性中心,而当底物结合时,谷氨酸瓣会从活性中心弹出。这种从封闭到开放的转变显著拓宽了底物结合通道,并精确地定位了切割的 1″-键,同时牢固地固定了 ADP-核糖的 2″-和 3″-羟基。我们的综合数据揭示了 ARH3 前所未有的结构可塑性,支持其对底物和 Mg 依赖性催化的 1″-键的特异性。