Suppr超能文献

体育科学中的当前研究与统计实践以及变革的必要性。

Current Research and Statistical Practices in Sport Science and a Need for Change.

作者信息

Bernards Jake R, Sato Kimitake, Haff G Gregory, Bazyler Caleb D

机构信息

Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN 37614, USA.

Center for Exercise and Sport Science Research, Edith Cowan University, Joondalup, WA 6027, Australia.

出版信息

Sports (Basel). 2017 Nov 15;5(4):87. doi: 10.3390/sports5040087.

Abstract

Current research ideologies in sport science allow for the possibility of investigators producing statistically significant results to help fit the outcome into a predetermined theory. Additionally, under the current Neyman-Pearson statistical structure, some argue that null hypothesis significant testing (NHST) under the frequentist approach is flawed, regardless. For example, a p-value is unable to measure the probability that the studied hypothesis is true, unable to measure the size of an effect or the importance of a result, and unable to provide a good measure of evidence regarding a model or hypothesis. Many of these downfalls are key questions researchers strive to answer following an investigation. Therefore, a shift towards a magnitude-based inference model, and eventually a fully Bayesian framework, is thought to be a better fit from a statistical standpoint and may be an improved way to address biases within the literature. The goal of this article is to shed light on the current research and statistical shortcomings the field of sport science faces today, and offer potential solutions to help guide future research practices.

摘要

体育科学领域当前的研究理念使得研究人员有可能得出具有统计学意义的结果,以便使研究结果符合预先设定的理论。此外,在当前的奈曼 - 皮尔逊统计结构下,一些人认为,无论如何,基于频率论方法的零假设显著性检验(NHST)存在缺陷。例如,p值无法衡量所研究假设为真的概率,无法衡量效应的大小或结果的重要性,也无法为关于模型或假设的证据提供良好的度量。许多这些不足之处都是研究人员在调查后努力回答的关键问题。因此,从统计角度来看,转向基于量级的推理模型,并最终转向完全的贝叶斯框架,可能是更合适的选择,并且可能是解决文献中偏差的一种改进方法。本文的目的是揭示体育科学领域目前面临的研究和统计缺陷,并提供潜在的解决方案,以帮助指导未来的研究实践。

相似文献

3
Statistics in ophthalmology revisited: the (effect) size matters.眼科统计学再探:(效应)大小很重要。
Acta Ophthalmol. 2018 Nov;96(7):e885-e888. doi: 10.1111/aos.13756. Epub 2018 Sep 5.
5
A review of issues about null hypothesis Bayesian testing.对零假设贝叶斯检验相关问题的综述。
Psychol Methods. 2019 Dec;24(6):774-795. doi: 10.1037/met0000221. Epub 2019 May 16.

引用本文的文献

7
Variability of time series barbell kinematics in elite male weightlifters.优秀男性举重运动员杠铃运动学时间序列的变异性
Front Sports Act Living. 2023 Sep 13;5:1264280. doi: 10.3389/fspor.2023.1264280. eCollection 2023.

本文引用的文献

2
The Numbers Will Love You Back in Return-I Promise.数字会回报你的爱——我保证。
Int J Sports Physiol Perform. 2016 May;11(4):551-4. doi: 10.1123/IJSPP.2016-0214.
3
Bayesian Estimation of Small Effects in Exercise and Sports Science.运动与体育科学中小效应的贝叶斯估计
PLoS One. 2016 Apr 13;11(4):e0147311. doi: 10.1371/journal.pone.0147311. eCollection 2016.
6
Why Science Is Not Necessarily Self-Correcting.为什么科学并非必然自我纠错
Perspect Psychol Sci. 2012 Nov;7(6):645-54. doi: 10.1177/1745691612464056.
7
The Bayesian boom: good thing or bad?贝叶斯方法的兴起:是好是坏?
Front Psychol. 2014 Aug 8;5:765. doi: 10.3389/fpsyg.2014.00765. eCollection 2014.
8
"Magnitude-based inference": a statistical review.“基于量级的推断”:一项统计学综述。
Med Sci Sports Exerc. 2015 Apr;47(4):874-84. doi: 10.1249/MSS.0000000000000451.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验