Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629HZ, The Netherlands.
Commun Biol. 2022 Jul 7;5(1):675. doi: 10.1038/s42003-022-03640-1.
Although the essential proteins that drive bacterial cytokinesis have been identified, the precise mechanisms by which they dynamically interact to enable symmetrical division are largely unknown. In Escherichia coli, cell division begins with the formation of a proto-ring composed of FtsZ and its membrane-tethering proteins FtsA and ZipA. In the broadly proposed molecular scenario for ring positioning, Min waves composed of MinD and MinE distribute the FtsZ-polymerization inhibitor MinC away from mid-cell, where the Z-ring can form. Therefore, MinC is believed to be an essential element connecting the Min and FtsZ subsystems. Here, by combining cell-free protein synthesis with planar lipid membranes and microdroplets, we demonstrate that MinDE drive the formation of dynamic, antiphase patterns of FtsA-anchored FtsZ filaments even in the absence of MinC. These results suggest that Z-ring positioning may be achieved with a more minimal set of proteins than previously envisaged, providing a fresh perspective about synthetic cell division.
虽然驱动细菌胞质分裂的基本蛋白已经被鉴定出来,但它们如何动态相互作用以实现对称分裂的精确机制在很大程度上仍是未知的。在大肠杆菌中,细胞分裂始于由 FtsZ 及其膜结合蛋白 FtsA 和 ZipA 组成的原环的形成。在广泛提出的环定位分子情景中,由 MinD 和 MinE 组成的 Min 波将 FtsZ 聚合抑制剂 MinC 从细胞中部分配出去,Z 环可以在那里形成。因此,MinC 被认为是连接 Min 和 FtsZ 子系统的重要元素。在这里,我们通过将无细胞蛋白合成与平面脂质膜和微滴相结合,证明了 MinDE 即使在没有 MinC 的情况下也能驱动 FtsA 锚定的 FtsZ 丝形成动态的反相模式。这些结果表明,Z 环的定位可能只需要比以前设想的更少的一组蛋白质即可实现,为合成细胞分裂提供了一个新的视角。