Department of Physical Performance, Norwegian School of Sport Sciences, Sognsveien 220, 0863, Oslo, Norway.
Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
Sports Med. 2018 Sep;48(9):2091-2102. doi: 10.1007/s40279-018-0941-1.
Skeletal muscle glycogen is an important energy source for muscle contraction and a key regulator of metabolic responses to exercise. Manipulation of muscle glycogen is therefore a strategy to improve performance in competitions and potentially adaptation to training. However, assessing muscle glycogen in the field is impractical, and there are no normative values for glycogen concentration at rest and during exercise.
The objective of this study was to meta-analyse the effects of fitness, acute dietary carbohydrate (CHO) availability and other factors on muscle glycogen concentration at rest and during exercise of different durations and intensities.
PubMed was used to search for original articles in English published up until February 2018. Search terms included muscle glycogen and exercise, filtered for humans. The analysis incorporated 181 studies of continuous or intermittent cycling and running by healthy participants, with muscle glycogen at rest and during exercise determined by biochemical analysis of biopsies.
Resting muscle glycogen was determined with a meta-regression mixed model that included fixed effects for fitness status [linear, as maximal oxygen uptake ([Formula: see text]O) in mL·kg·min] and CHO availability (three levels: high, ≥ 6 g·kg of CHO per day for ≥ 3 days or ≥ 7 g·kg CHO per day for ≥ 2 days; low, glycogen depletion and low-CHO diet; and normal, neither high nor low, or not specified in study). Muscle glycogen during exercise was determined with a meta-regression mixed model that included fixed effects for fitness status, resting glycogen [linear, in mmol·kg of dry mass (DM)], exercise duration (five levels, with means of 5, 23, 53 and 116 min, and time to fatigue), and exercise intensity (linear, as percentage of [Formula: see text]O); intensity, fitness and resting glycogen were interacted with duration, and there were also fixed effects for exercise modes, CHO ingestion, sex and muscle type. Random effects in both models accounted for between-study variance and within-study repeated measurement. Inferences about differences and changes in glycogen were based on acceptable uncertainty in standardised magnitudes, with thresholds for small, moderate, large and very large of 25, 75, 150 and 250 mmol·kg of DM, respectively.
The resting glycogen concentration in the vastus lateralis of males with normal CHO availability and [Formula: see text]O (mean ± standard deviation, 53 ± 8 mL·kg·min) was 462 ± 132 mmol·kg. High CHO availability was associated with a moderate increase in resting glycogen (102, ± 47 mmol·kg; mean ± 90% confidence limits), whereas low availability was associated with a very large decrease (- 253, ± 30 mmol·kg). An increase in [Formula: see text]O of 10 mL·kg·min had small effects with low and normal CHO availability (29, ± 44 and 67, ± 15 mmol·kg, respectively) and a moderate effect with high CHO availability (80, ± 40 mmol·kg). There were small clear increases in females and the gastrocnemius muscle. Clear modifying effects on glycogen utilisation during exercise were as follows: a 30% [Formula: see text]O increase in intensity, small (41, ± 20 mmol·kg) at 5 min and moderate (87-134 mmol·kg) at all other timepoints; an increase in baseline glycogen of 200 mmol·kg, small at 5-23 min (28-59 mmol·kg), moderate at 116 min (104, ± 15 mmol·kg) and moderate at fatigue (143, ± 33 mmol·kg); an increase in [Formula: see text]O of 10 mL·kg·min, mainly clear trivial effects; exercise mode (intermittent vs. continuous) and CHO ingestion, clear trivial effects. Small decreases in utilisation were observed in females (vs. males: - 30, ± 29 mmol·kg), gastrocnemius muscle (vs. vastus lateralis: - 31, ± 46 mmol·kg) and running (vs. cycling: - 70, ± 32 mmol·kg).
Dietary CHO availability and fitness are important factors for resting muscle glycogen. Exercise intensity and baseline muscle glycogen are important factors determining glycogen use during exercise, especially with longer exercise duration. The meta-analysed effects may be useful normative values for prescription of endurance exercise.
骨骼肌糖原是肌肉收缩的重要能量来源,也是代谢对运动反应的关键调节剂。因此,操纵肌肉糖原是提高比赛成绩和适应训练的一种策略。然而,在现场评估肌肉糖原是不切实际的,并且在休息和运动期间没有糖原浓度的正常值。
本研究的目的是通过荟萃分析来评估健康参与者连续或间歇性骑行和跑步时的体能、急性膳食碳水化合物(CHO)可用性以及其他因素对休息和不同持续时间及强度运动时肌肉糖原浓度的影响。
使用 PubMed 搜索截至 2018 年 2 月发表的英文原始文章。搜索术语包括肌肉糖原和运动,过滤为人类。该分析纳入了 181 项关于健康参与者连续或间歇性骑行和跑步的研究,通过对活检的生化分析来确定休息时和运动时的肌肉糖原。
休息时的肌肉糖原通过包括固定效应的混合模型进行确定,固定效应包括体能状态[线性,以最大摄氧量([Formula: see text]O)的毫升·千克·分钟表示]和 CHO 可用性(三个水平:高,[Formula: see text]O 每天摄入≥6g·kg 的 CHO 持续至少 3 天或每天摄入≥7g·kg CHO 持续至少 2 天;低,糖原耗竭和低 CHO 饮食;正常,既不高也不低,或在研究中未指定)。运动时的肌肉糖原通过包括固定效应的混合模型进行确定,固定效应包括体能状态、休息时糖原[线性,以每千克干重的毫摩尔(mmol·kg 的 DM)表示]、运动持续时间(五个水平,均值为 5、23、53 和 116 分钟,以及疲劳时间)和运动强度(线性,以[Formula: see text]O 的百分比表示);强度、体能和休息时的糖原与运动持续时间相互作用,运动模式、CHO 摄入、性别和肌肉类型也有固定效应。两个模型中的随机效应解释了研究之间的变异性和研究内的重复测量。基于可接受的标准量值的不确定性,对糖原的差异和变化进行推断,分别为 25、75、150 和 250mmol·kg 的 DM 的小、中、大、非常大阈值。
正常 CHO 可用性和[Formula: see text]O(均值±标准差,53±8ml·kg·min)的男性股外侧肌的休息时糖原浓度为 462±132mmol·kg。高 CHO 可用性与休息时糖原的适度增加(102,±47mmol·kg;均值±90%置信区间)相关,而低可用性与非常大的减少(-253,±30mmol·kg)相关。[Formula: see text]O 增加 10ml·kg·min 对低和正常 CHO 可用性的影响较小(分别为 29,±44 和 67,±15mmol·kg),对高 CHO 可用性的影响中等(80,±40mmol·kg)。女性和比目鱼肌的糖原利用率明显增加。运动时糖原利用的明确修饰作用如下:强度增加 30%[Formula: see text]O,在 5 分钟时为小(41,±20mmol·kg),在所有其他时间点为中(87-134mmol·kg);基线糖原增加 200mmol·kg,在 5-23 分钟时为小(28-59mmol·kg),在 116 分钟时为中(104,±15mmol·kg),在疲劳时为中(143,±33mmol·kg);[Formula: see text]O 增加 10ml·kg·min,主要是明显的轻微影响;运动模式(间歇与连续)和 CHO 摄入,明显的轻微影响。女性(与男性相比:-30,±29mmol·kg)、比目鱼肌(与股外侧肌相比:-31,±46mmol·kg)和跑步(与骑行相比:-70,±32mmol·kg)的糖原利用率下降。
膳食 CHO 可用性和体能是休息时肌肉糖原的重要因素。运动强度和基线肌肉糖原是决定运动时糖原利用的重要因素,尤其是在运动持续时间较长时。荟萃分析的影响可能是耐力运动处方的有用正常值。