Department of Radiology-Medical Imaging Physics, Johns Hopkins University School of Medicine , Baltimore, Maryland.
Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland.
J Appl Physiol (1985). 2018 Oct 1;125(4):983-989. doi: 10.1152/japplphysiol.00184.2018. Epub 2018 Jun 21.
We hypothesize that noninvasive photoacoustic imaging can accurately measure cerebral venous oxyhemoglobin saturation (So) in a neonatal model of hypoxia-ischemia. In neonatal piglets, which have a skull thickness comparable to that of human neonates, we compared the photoacoustic measurement of sagittal sinus So against that measured directly by blood sampling over a wide range of conditions. Systemic hypoxia was produced by decreasing inspired oxygen stepwise (i.e., 100, 21, 19, 17, 15, 14, 13, 12, 11, and 10%) with and without unilateral or bilateral ligation of the common carotid arteries to enhance hypoxia-ischemia. Transcranial photoacoustic sensing enabled us to detect changes in sagittal sinus O saturation throughout the tested range of 5-80% without physiologically relevant bias. Despite lower cortical perfusion and higher oxygen extraction in groups with carotid occlusion at equivalent inspired oxygen, photoacoustic measurements successfully provided a robust linear correlation that approached the line of identity with direct blood sample measurements. Receiver-operating characteristic analysis for discriminating So <30% showed an area under the curve of 0.84 for the pooled group data, and 0.87, 0.91, and 0.92 for hypoxia alone, hypoxia plus unilateral occlusion, and hypoxia plus bilateral occlusion subgroups, respectively. The detection precision in this critical range was confirmed with sensitivity (87.0%), specificity (86.5%), accuracy (86.8%), positive predictive value (90.5%), and negative predictive value (81.8%) in the combined dataset. These results validate the capability of photoacoustic sensing technology to accurately monitor sagittal sinus So noninvasively over a wide range and support its use for early detection of neonatal hypoxia-ischemia. NEW & NOTEWORTHY We present data to validate the noninvasive photoacoustic measurement of sagittal sinus oxyhemoglobin saturation. In particular, this paper demonstrates the robustness of this methodology during a wide range of hemodynamic and physiological changes induced by the stepwise decrease of fractional inspired oxygen to produce hypoxia and by unilateral and bilateral ligation of the common carotid arteries preceding hypoxia to produce hypoxia-ischemia. This technique may be useful for diagnosing risk of neonatal hypoxic-ischemic encephalopathy.
我们假设非侵入性光声成像是一种能够准确测量缺氧缺血新生仔猪模型中脑静脉血氧饱和度(So)的方法。在颅骨厚度与人类新生儿相当的新生仔猪中,我们比较了矢状窦 So 的光声测量值与通过血液取样直接测量值,检测范围很广。通过逐步降低吸入氧气的分数(即 100、21、19、17、15、14、13、12、11 和 10%),同时单侧或双侧结扎颈总动脉,来产生缺氧和缺血。颅穿透光声感测使我们能够在 5%至 80%的测试范围内检测到矢状窦 O 饱和度的变化,而没有生理相关的偏差。尽管在等效吸入氧气时伴有颈总动脉闭塞的皮质灌注更低、氧气提取更高,但光声测量值成功地提供了与直接血液样本测量值非常接近的稳健线性相关性。用于区分 So<30%的受试者工作特征分析显示,对合并组数据的曲线下面积为 0.84,而单独缺氧、缺氧加单侧闭塞和缺氧加双侧闭塞亚组的曲线下面积分别为 0.87、0.91 和 0.92。在合并数据集的灵敏度(87.0%)、特异性(86.5%)、准确性(86.8%)、阳性预测值(90.5%)和阴性预测值(81.8%)中,确认了在该关键范围内的检测精度。这些结果验证了光声传感技术在广泛的范围内无创监测矢状窦 So 的能力,并支持其用于早期检测新生儿缺氧缺血。
我们提供了数据来验证矢状窦氧合血红蛋白饱和度的非侵入性光声测量。特别是,本文证明了这种方法在由逐步降低吸入氧气分数产生的缺氧和由单侧和双侧结扎颈总动脉产生的缺氧缺血之前,在一系列广泛的血流动力学和生理变化下的稳健性。这种技术可能对诊断新生儿缺氧缺血性脑病的风险有用。