Suppr超能文献

使用基于非侵入性传感器的信息和通信技术获取痴呆症临床试验的真实世界证据。

Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia.

机构信息

Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany; DZNE, German Center for Neurodegenerative Diseases, Rostock, Germany.

Centre Mémoire de Ressources et de Recherche (CMRR), Centre Hospitalier Universitaire Nice, Cobtek (Cognition-Behaviour-Technology) Research Lab, Université de Nice Sophia Antipolis, Nice, France.

出版信息

Alzheimers Dement. 2018 Sep;14(9):1216-1231. doi: 10.1016/j.jalz.2018.05.003. Epub 2018 Jun 21.

Abstract

Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials.

摘要

认知功能是痴呆症临床试验治疗的重要终点。然而,通过标准化测试来衡量认知功能,会偏向于在特定样本中高度受限的环境(如医院)进行测量。使用信息和通信技术设备(包括环境和可穿戴传感器)的患者驱动的真实世界证据,可能有助于克服这些限制。本立场文件描述了当前和新型的信息和通信技术设备和算法,用于连续监测前驱期和显性痴呆患者的行为和功能,并讨论了在未来随机对照试验中收集真实世界证据的临床、技术、伦理、监管和以用户为中心的要求。数据安全、质量和隐私以及监管要求的挑战需要由未来的智能传感器技术来解决。当这些要求得到满足时,这些技术将提供真正与用户相关的结果,并使比目前临床试验中抽样的参与者更广泛的队列能够参与研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6df5/6179371/475ee2a97c66/nihms-991130-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验