Suppr超能文献

离子强度对剪切稀化纳米粘土-聚合物复合水凝胶的影响。

Effect of ionic strength on shear-thinning nanoclay-polymer composite hydrogels.

机构信息

Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.

出版信息

Biomater Sci. 2018 Jul 24;6(8):2073-2083. doi: 10.1039/c8bm00469b.

Abstract

Nanoclay-polymer shear-thinning composites are designed for a broad range of biomedical applications, including tissue engineering, drug delivery, and additive biomanufacturing. Despite the advances in clay-polymer injectable nanocomposites, colloidal properties of layered silicates are not fully considered in evaluating the in vitro performance of shear-thinning biomaterials (STBs). Here, as a model system, we investigate the effect of ions on the rheological properties and injectability of nanoclay-gelatin hydrogels to understand their behavior when prepared in physiological media. In particular, we study the effect of sodium chloride (NaCl) and calcium chloride (CaCl2), common salts in phosphate buffered saline (PBS) and cell culture media (e.g., Dulbecco's Modified Eagle's Medium, DMEM), on the structural organization of nanoclay (LAPONITE® XLG-XR, a hydrous lithium magnesium sodium silicate)-polymer composites, responsible for the shear-thinning properties and injectability of STBs. We show that the formation of nanoclay-polymer aggregates due to the ion-induced shrinkage of the diffuse double layer and eventually the liquid-solid phase separation decrease the resistance of STB against elastic deformation, decreasing the yield stress. Accordingly, the stress corresponding to the onset of structural breakdown (yield zone) is regulated by the ion type and concentration. These results are independent of the STB composition and can directly be translated into the physiological conditions. The exfoliated nanoclay undergoes visually undetectable aggregation upon mixing with gelatin in physiological media, resulting in heterogeneous hydrogels that phase separate under stress. This work provides fundamental insights into nanoclay-polymer interactions in physiological environments, paving the way for designing clay-based injectable biomaterials.

摘要

纳米粘土-聚合物剪切稀化复合材料被设计用于广泛的生物医学应用,包括组织工程、药物输送和添加剂生物制造。尽管粘土-聚合物可注射纳米复合材料取得了进展,但在评估剪切稀化生物材料(STB)的体外性能时,层状硅酸盐的胶体性质并未得到充分考虑。在这里,我们以模型体系研究了离子对纳米粘土-明胶水凝胶流变性能和可注射性的影响,以了解它们在生理介质中制备时的行为。特别是,我们研究了氯化钠(NaCl)和氯化钙(CaCl2)的影响,这两种盐分别是磷酸盐缓冲盐水(PBS)和细胞培养基(如 Dulbecco's Modified Eagle's Medium,DMEM)中的常见盐,对纳米粘土(LAPONITE® XLG-XR,一种水合锂镁钠硅酸盐)-聚合物复合材料的结构组织的影响,纳米粘土-聚合物复合材料负责 STB 的剪切稀化特性和可注射性。我们表明,由于离子诱导的扩散双电层收缩,导致纳米粘土-聚合物聚集体的形成,最终发生液-固相分离,降低了 STB 对弹性变形的阻力,降低了屈服应力。因此,结构破坏(屈服区)开始时的应力受离子类型和浓度的调节。这些结果与 STB 组成无关,可以直接转化为生理条件。在生理介质中与明胶混合时,纳米粘土发生肉眼无法检测到的聚集,导致在应力下相分离的异质水凝胶。这项工作为在生理环境中研究纳米粘土-聚合物相互作用提供了基础见解,为设计基于粘土的可注射生物材料铺平了道路。

相似文献

引用本文的文献

本文引用的文献

1
Nanoengineered Osteoinductive and Elastomeric Scaffolds for Bone Tissue Engineering.用于骨组织工程的纳米工程化骨诱导弹性支架
ACS Biomater Sci Eng. 2017 Apr 10;3(4):590-600. doi: 10.1021/acsbiomaterials.7b00029. Epub 2017 Mar 15.
4
Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting.用于 3D 生物打印的剪切稀化和热可逆纳米工程墨水。
ACS Appl Mater Interfaces. 2017 Dec 20;9(50):43449-43458. doi: 10.1021/acsami.7b13602. Epub 2017 Dec 7.
5
Laponite®: A key nanoplatform for biomedical applications?拉彭特石:用于生物医学应用的关键纳米平台?
Nanomedicine. 2018 Oct;14(7):2407-2420. doi: 10.1016/j.nano.2017.04.016. Epub 2017 May 26.
6
Rheology of Laponite-scleroglucan hydrogels.拉蓬土-黄蓍胶水凝胶的流变性。
Carbohydr Polym. 2017 Jul 15;168:290-300. doi: 10.1016/j.carbpol.2017.03.068. Epub 2017 Mar 23.
9
Injectable biomaterials for stem cell delivery and tissue regeneration.用于干细胞递送和组织再生的可注射生物材料。
Expert Opin Biol Ther. 2017 Jan;17(1):49-62. doi: 10.1080/14712598.2017.1256389. Epub 2016 Nov 9.
10
Photoresponsive nanoparticles for drug delivery.用于药物递送的光响应纳米颗粒。
Nano Today. 2015 Aug 1;10(4):451-467. doi: 10.1016/j.nantod.2015.06.004. Epub 2015 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验