Hangzhou Dianzi University, Hangzhou, China.
Neuroinformatics. 2018 Oct;16(3-4):363-372. doi: 10.1007/s12021-018-9386-9.
The era of human brain science research is dawning. Researchers utilize the various multi-disciplinary knowledge to explore the human brain,such as physiology and bioinformatics. The emerging disease association prediction technology can speed up the study of diseases, so as to better understanding the structure and function of human body. There are increasing evidences that miRNA plays a significant role in nervous system development, adult function, plasticity, and vulnerability to neurological disease states. In this paper ,we proposed the novel improved collaborative filtering-based miRNA-disease association prediction (ICFMDA) approach. Known miRNA-disease associations can be viewed as a bipartite network between diseases and miRNAs. ICFMDA defined significance SIG between pairs of diseases or miRNAs to model the preference on the choices of other entities. The collaborative filtering algorithm is further improved by incorporating similarity matrices to enable the prediction for new miRNA or disease without known associations. Potential miRNA-disease associations are scored with the addition of bidirectional recommendation results with low computational cost. ICFMDA achieved a 0.9076 AUC of ROC curve in global leave-one-out cross validation, which outperformed the state-of-the-art models. ICFMDA is a compact and accurate tool for potential miRNA-disease association prediction. We hope that ICFMDA would be useful in future miRNA and brain researches,and achieve better understanding of the nervous system in molecular level, cellular level, cell change process, and thus can support the research of human brain.
人类脑科学研究的时代正在到来。研究人员利用各种多学科知识来探索大脑,如生理学和生物信息学。新兴的疾病关联预测技术可以加速疾病的研究,从而更好地了解人体的结构和功能。越来越多的证据表明,miRNA 在神经系统发育、成人功能、可塑性以及对神经疾病状态的易感性方面发挥着重要作用。在本文中,我们提出了一种新颖的基于改进协同过滤的 miRNA-疾病关联预测方法(ICFMDA)。已知的 miRNA-疾病关联可以看作是疾病和 miRNA 之间的二分网络。ICFMDA 定义了疾病对或 miRNA 对之间的显著性 SIG,以对其他实体的选择偏好进行建模。通过合并相似性矩阵进一步改进协同过滤算法,以便在没有已知关联的情况下对新的 miRNA 或疾病进行预测。通过添加具有低计算成本的双向推荐结果,对潜在的 miRNA-疾病关联进行评分。在全局留一交叉验证中,ICFMDA 的 ROC 曲线 AUC 达到 0.9076,优于最先进的模型。ICFMDA 是一种用于潜在 miRNA-疾病关联预测的紧凑而准确的工具。我们希望 ICFMDA 将有助于未来的 miRNA 和大脑研究,并在分子水平、细胞水平、细胞变化过程中实现对神经系统的更好理解,从而支持人类大脑的研究。