Suppr超能文献

物质使用障碍及治疗相关性静息态功能连接的改变。

Alterations in resting-state functional connectivity in substance use disorders and treatment implications.

机构信息

Mind Research Network, Albuquerque, NM, United States.

Department of Psychiatry, University of New, Albuquerque, NM, United States.

出版信息

Prog Neuropsychopharmacol Biol Psychiatry. 2019 Apr 20;91:79-93. doi: 10.1016/j.pnpbp.2018.06.011. Epub 2018 Jun 25.

Abstract

Substance use disorders (SUD) are diseases of the brain, characterized by aberrant functioning in the neural circuitry of the brain. Resting state functional connectivity (rsFC) can illuminate these functional changes by measuring the temporal coherence of low-frequency fluctuations of the blood oxygenation level-dependent magnetic resonance imaging signal in contiguous or non-contiguous regions of the brain. Because this data is easy to obtain and analyze, and therefore fairly inexpensive, it holds promise for defining biological treatment targets in SUD, which could help maximize the efficacy of existing clinical interventions and develop new ones. In an effort to identify the most likely "treatment targets" obtainable with rsFC we summarize existing research in SUD focused on 1) the relationships between rsFC and functionality within important psychological domains which are believed to underlie relapse vulnerability 2) changes in rsFC from satiety to deprived or abstinent states 3) baseline rsFC correlates of treatment outcome and 4) changes in rsFC induced by treatment interventions which improve clinical outcomes and reduce relapse risk. Converging evidence indicates that likely "treatment target" candidates, emerging consistently in all four sections, are reduced connectivity within executive control network (ECN) and between ECN and salience network (SN). Other potential treatment targets also show promise, but the literature is sparse and more research is needed. Future research directions include data-driven prediction analyses and rsFC analyses with longitudinal datasets that incorporate time since last use into analysis to account for drug withdrawal. Once the most reliable biological markers are identified, they can be used for treatment matching, during preliminary testing of new pharmacological compounds to establish clinical potential ("target engagement") prior to carrying out costly clinical trials, and for generating hypotheses for medication repurposing.

摘要

物质使用障碍(SUD)是一种大脑疾病,其特征是大脑神经网络功能异常。静息态功能连接(rsFC)可以通过测量大脑连续或非连续区域血氧水平依赖磁共振成像信号低频波动的时间相干性来揭示这些功能变化。由于这种数据易于获取和分析,因此相对便宜,它有望定义 SUD 的生物学治疗靶点,这可以帮助最大限度地提高现有临床干预措施的疗效,并开发新的干预措施。为了确定最有可能通过 rsFC 获得的“治疗靶点”,我们总结了 SUD 领域中现有的研究,这些研究集中在以下四个方面:1)rsFC 与被认为是复发脆弱性基础的重要心理领域内功能之间的关系;2)从满足状态到剥夺或戒断状态时 rsFC 的变化;3)治疗结果的基线 rsFC 相关性;4)改善临床结果和降低复发风险的治疗干预引起的 rsFC 变化。一致的证据表明,四个部分中一致出现的可能的“治疗靶点”候选物是执行控制网络(ECN)内和 ECN 与突显网络(SN)之间连接减少。其他潜在的治疗靶点也有希望,但文献稀少,需要更多的研究。未来的研究方向包括数据驱动的预测分析和 rsFC 分析,这些分析使用纵向数据集,将上次使用的时间纳入分析中,以考虑药物戒断。一旦确定了最可靠的生物标志物,它们就可以用于治疗匹配,在进行昂贵的临床试验之前,对新的药物化合物进行初步测试以确定其临床潜力(“靶点结合”),并为药物再利用生成假设。

相似文献

引用本文的文献

7
Neuroimaging Biomarkers in Addiction.成瘾中的神经影像学生物标志物
medRxiv. 2024 Sep 3:2024.09.02.24312084. doi: 10.1101/2024.09.02.24312084.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验