Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
Science. 2018 Jun 29;360(6396):1447-1451. doi: 10.1126/science.aas9160.
The retina, which processes visual information and sends it to the brain, is an excellent model for studying neural circuitry. It has been probed extensively ex vivo but has been refractory to chronic in vivo electrophysiology. We report a nonsurgical method to achieve chronically stable in vivo recordings from single retinal ganglion cells (RGCs) in awake mice. We developed a noncoaxial intravitreal injection scheme in which injected mesh electronics unrolls inside the eye and conformally coats the highly curved retina without compromising normal eye functions. The method allows 16-channel recordings from multiple types of RGCs with stable responses to visual stimuli for at least 2 weeks, and reveals circadian rhythms in RGC responses over multiple day/night cycles.
视网膜处理视觉信息并将其发送到大脑,是研究神经回路的极佳模型。它已经在体外进行了广泛的探测,但对慢性体内电生理学仍然具有抗性。我们报告了一种非手术方法,可在清醒小鼠中实现对单个视网膜神经节细胞 (RGC) 的长期稳定体内记录。我们开发了一种非同轴眼内注射方案,其中注入的网状电子产品在眼睛内部展开,并适应地覆盖高度弯曲的视网膜,而不会影响正常的眼睛功能。该方法允许从多种类型的 RGC 进行 16 通道记录,并且对视觉刺激的反应稳定至少 2 周,并且揭示了 RGC 反应在多个昼夜周期中的昼夜节律。