Suppr超能文献

相似文献

3
Detection and Characterization of a Novel Copper-Dependent Intermediate in a Lytic Polysaccharide Monooxygenase.
Chemistry. 2020 Jan 7;26(2):454-463. doi: 10.1002/chem.201903562. Epub 2019 Dec 10.
5
Identification of a thermostable fungal lytic polysaccharide monooxygenase and evaluation of its effect on lignocellulosic degradation.
Appl Microbiol Biotechnol. 2019 Jul;103(14):5739-5750. doi: 10.1007/s00253-019-09928-3. Epub 2019 May 31.
6
Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):149-54. doi: 10.1073/pnas.1316609111. Epub 2013 Dec 16.
7
Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases.
J Biol Chem. 2019 Nov 8;294(45):17117-17130. doi: 10.1074/jbc.RA119.009223. Epub 2019 Aug 30.
8
Resonance assignments for the apo-form of the cellulose-active lytic polysaccharide monooxygenase TaLPMO9A.
Biomol NMR Assign. 2018 Oct;12(2):357-361. doi: 10.1007/s12104-018-9839-y. Epub 2018 Aug 16.
9
The rotamer of the second-sphere histidine in AA9 lytic polysaccharide monooxygenase is pH dependent.
Biophys J. 2024 May 7;123(9):1139-1151. doi: 10.1016/j.bpj.2024.04.002. Epub 2024 Apr 2.

引用本文的文献

1
Calcium-binding site in AA10 LPMO from suggests modulating effects during environmental survival and infection.
QRB Discov. 2024 Dec 26;5:e12. doi: 10.1017/qrd.2024.14. eCollection 2024.
2
Site-Specific Histidine Aza-Michael Addition in Proteins Enabled by a Ferritin-Based Metalloenzyme.
J Am Chem Soc. 2024 Dec 11;146(49):33309-33315. doi: 10.1021/jacs.4c14446. Epub 2024 Nov 5.
3
Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion.
Chem Rev. 2024 Aug 28;124(16):9580-9608. doi: 10.1021/acs.chemrev.4c00031. Epub 2024 Jul 2.
4
Assessing the role of redox partners in TthLPMO9G and its mutants: focus on HO production and interaction with cellulose.
Biotechnol Biofuels Bioprod. 2024 Feb 1;17(1):19. doi: 10.1186/s13068-024-02463-y.
5
Expanding the catalytic landscape of metalloenzymes with lytic polysaccharide monooxygenases.
Nat Rev Chem. 2024 Feb;8(2):106-119. doi: 10.1038/s41570-023-00565-z. Epub 2024 Jan 10.
7
Mapping the Initial Stages of a Protective Pathway that Enhances Catalytic Turnover by a Lytic Polysaccharide Monooxygenase.
J Am Chem Soc. 2023 Sep 20;145(37):20672-20682. doi: 10.1021/jacs.3c06607. Epub 2023 Sep 9.
9
Investigating the role of AA9 LPMOs in enzymatic hydrolysis of differentially steam-pretreated spruce.
Biotechnol Biofuels Bioprod. 2023 Apr 19;16(1):68. doi: 10.1186/s13068-023-02316-0.
10
AA16 Oxidoreductases Boost Cellulose-Active AA9 Lytic Polysaccharide Monooxygenases from .
ACS Catal. 2023 Mar 21;13(7):4454-4467. doi: 10.1021/acscatal.3c00874. eCollection 2023 Apr 7.

本文引用的文献

1
Reactivity of O versus HO with polysaccharide monooxygenases.
Proc Natl Acad Sci U S A. 2018 May 8;115(19):4915-4920. doi: 10.1073/pnas.1801153115. Epub 2018 Apr 23.
2
Kinetics of HO-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase.
J Biol Chem. 2018 Jan 12;293(2):523-531. doi: 10.1074/jbc.M117.817593. Epub 2017 Nov 14.
3
Oxidative cleavage of polysaccharides by monocopper enzymes depends on HO.
Nat Chem Biol. 2017 Oct;13(10):1123-1128. doi: 10.1038/nchembio.2470. Epub 2017 Aug 28.
4
Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs.
Biotechnol Biofuels. 2017 Jul 11;10:177. doi: 10.1186/s13068-017-0862-5. eCollection 2017.
5
Type-dependent action modes of AA9E and AA9A acting on cellulose and differently pretreated lignocellulosic substrates.
Biotechnol Biofuels. 2017 Feb 22;10:46. doi: 10.1186/s13068-017-0721-4. eCollection 2017.
6
Structural diversity of lytic polysaccharide monooxygenases.
Curr Opin Struct Biol. 2017 Jun;44:67-76. doi: 10.1016/j.sbi.2016.12.012. Epub 2017 Jan 10.
7
Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase.
Protein Sci. 2016 Dec;25(12):2175-2186. doi: 10.1002/pro.3043. Epub 2016 Sep 26.
9
Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity.
Biotechnol Biofuels. 2016 Aug 31;9(1):186. doi: 10.1186/s13068-016-0594-y. eCollection 2016.
10
FgLPMO9A from Fusarium graminearum cleaves xyloglucan independently of the backbone substitution pattern.
FEBS Lett. 2016 Oct;590(19):3346-3356. doi: 10.1002/1873-3468.12385. Epub 2016 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验