Suppr超能文献

曲面上点云的恢复:在图像重建中的应用

RECOVERY OF POINT CLOUDS ON SURFACES: APPLICATION TO IMAGE RECONSTRUCTION.

作者信息

Poddar Sunrita, Jacob Mathews

机构信息

Department of Electrical and Computer Engineering, University of Iowa, IA, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1272-1275. doi: 10.1109/isbi.2018.8363803. Epub 2018 May 24.

Abstract

We introduce a framework for the recovery of points on a smooth surface in high-dimensional space, with application to dynamic imaging. We assume the surface to be the zero-level set of a bandlimited function. We show that the exponential maps of the points on the surface satisfy annihilation relations, implying that they lie in a finite dimensional subspace. We rely on nuclear norm minimization of the maps to recover the points from noisy and undersampled measurements. Since this direct approach suffers from the curse of dimensionality, we introduce an iterative reweighted algorithm that uses the "kernel trick". The resulting algorithm has similarities to iterative algorithms used in graph signal processing (GSP); this framework can be seen as a continuous domain alternative to discrete GSP theory. The use of the algorithm in recovering free breathing and ungated cardiac data shows the potential of this framework in practical applications.

摘要

我们引入了一个用于在高维空间中恢复光滑曲面上点的框架,并将其应用于动态成像。我们假设该曲面是一个带限函数的零水平集。我们证明曲面上点的指数映射满足湮灭关系,这意味着它们位于一个有限维子空间中。我们依靠映射的核范数最小化,从噪声和欠采样测量中恢复这些点。由于这种直接方法存在维数灾难问题,我们引入了一种使用“核技巧”的迭代加权算法。所得算法与图信号处理(GSP)中使用的迭代算法有相似之处;该框架可被视为离散GSP理论的连续域替代方案。该算法在恢复自由呼吸和非门控心脏数据中的应用展示了此框架在实际应用中的潜力。

相似文献

1
RECOVERY OF POINT CLOUDS ON SURFACES: APPLICATION TO IMAGE RECONSTRUCTION.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1272-1275. doi: 10.1109/isbi.2018.8363803. Epub 2018 May 24.
2
RECOVERY OF NOISY POINTS ON BANDLIMITED SURFACES: KERNEL METHODS RE-EXPLAINED.
Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:4024-4028. doi: 10.1109/icassp.2018.8462186. Epub 2018 Sep 13.
3
Manifold recovery using kernel low-rank regularization: application to dynamic imaging.
IEEE Trans Comput Imaging. 2019 Sep;5(3):478-491. doi: 10.1109/tci.2019.2893598. Epub 2019 Jan 24.
4
SAMPLING OF SURFACES AND LEARNING FUNCTIONS IN HIGH DIMENSIONS.
Proc IEEE Int Conf Acoust Speech Signal Process. 2020 May;2020:8354-8358. doi: 10.1109/icassp40776.2020.9053876. Epub 2020 May 14.
5
Recovery of surfaces and functions in high dimensions: sampling theory and links to neural networks.
SIAM J Imaging Sci. 2021;14(2):580-619. doi: 10.1137/20M1340654. Epub 2021 May 10.
7
DYNAMIC MRI USING DEEP MANIFOLD SELF-LEARNING.
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1052-1055. doi: 10.1109/isbi45749.2020.9098382. Epub 2020 May 22.
8
STRUCTURED LOW-RANK RECOVERY OF PIECEWISE CONSTANT SIGNALS WITH PERFORMANCE GUARANTEES.
Proc Int Conf Image Proc. 2016 Sep;2016:963-967. doi: 10.1109/icip.2016.7532500. Epub 2016 Aug 19.
9
Prediction of high-dimensional states subject to respiratory motion: a manifold learning approach.
Phys Med Biol. 2016 Jul 7;61(13):4989-99. doi: 10.1088/0031-9155/61/13/4989. Epub 2016 Jun 14.
10
Discrete Geodesic Distribution-Based Graph Kernel for 3D Point Clouds.
Sensors (Basel). 2023 Feb 21;23(5):2398. doi: 10.3390/s23052398.

引用本文的文献

1
Recovery of surfaces and functions in high dimensions: sampling theory and links to neural networks.
SIAM J Imaging Sci. 2021;14(2):580-619. doi: 10.1137/20M1340654. Epub 2021 May 10.
2
Manifold recovery using kernel low-rank regularization: application to dynamic imaging.
IEEE Trans Comput Imaging. 2019 Sep;5(3):478-491. doi: 10.1109/tci.2019.2893598. Epub 2019 Jan 24.
3
SAMPLING OF SURFACES AND LEARNING FUNCTIONS IN HIGH DIMENSIONS.
Proc IEEE Int Conf Acoust Speech Signal Process. 2020 May;2020:8354-8358. doi: 10.1109/icassp40776.2020.9053876. Epub 2020 May 14.

本文引用的文献

1
Off-the-Grid Recovery of Piecewise Constant Images from Few Fourier Samples.
SIAM J Imaging Sci. 2016;9(3):1004-1041. doi: 10.1137/15M1042280. Epub 2016 Jul 21.
2
A Kernel-Based Low-Rank (KLR) Model for Low-Dimensional Manifold Recovery in Highly Accelerated Dynamic MRI.
IEEE Trans Med Imaging. 2017 Nov;36(11):2297-2307. doi: 10.1109/TMI.2017.2723871. Epub 2017 Jul 5.
3
Accelerated dynamic MRI using patch regularization for implicit motion compensation.
Magn Reson Med. 2017 Mar;77(3):1238-1248. doi: 10.1002/mrm.26215. Epub 2016 Apr 19.
4
Dynamic MRI Using SmooThness Regularization on Manifolds (SToRM).
IEEE Trans Med Imaging. 2016 Apr;35(4):1106-15. doi: 10.1109/TMI.2015.2509245. Epub 2015 Dec 17.
5
Iterative Shrinkage Algorithm for Patch-Smoothness Regularized Medical Image Recovery.
IEEE Trans Med Imaging. 2015 Dec;34(12):2417-28. doi: 10.1109/TMI.2015.2398466. Epub 2015 Jan 30.
6
Nonlocal regularization of inverse problems: a unified variational framework.
IEEE Trans Image Process. 2013 Aug;22(8):3192-203. doi: 10.1109/TIP.2012.2216278. Epub 2012 Sep 20.
7
BM3D frames and variational image deblurring.
IEEE Trans Image Process. 2012 Apr;21(4):1715-28. doi: 10.1109/TIP.2011.2176954. Epub 2011 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验