Poddar Sunrita, Jacob Mathews
Department of Electrical and Computer Engineering, University of Iowa, IA, USA.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1272-1275. doi: 10.1109/isbi.2018.8363803. Epub 2018 May 24.
We introduce a framework for the recovery of points on a smooth surface in high-dimensional space, with application to dynamic imaging. We assume the surface to be the zero-level set of a bandlimited function. We show that the exponential maps of the points on the surface satisfy annihilation relations, implying that they lie in a finite dimensional subspace. We rely on nuclear norm minimization of the maps to recover the points from noisy and undersampled measurements. Since this direct approach suffers from the curse of dimensionality, we introduce an iterative reweighted algorithm that uses the "kernel trick". The resulting algorithm has similarities to iterative algorithms used in graph signal processing (GSP); this framework can be seen as a continuous domain alternative to discrete GSP theory. The use of the algorithm in recovering free breathing and ungated cardiac data shows the potential of this framework in practical applications.
我们引入了一个用于在高维空间中恢复光滑曲面上点的框架,并将其应用于动态成像。我们假设该曲面是一个带限函数的零水平集。我们证明曲面上点的指数映射满足湮灭关系,这意味着它们位于一个有限维子空间中。我们依靠映射的核范数最小化,从噪声和欠采样测量中恢复这些点。由于这种直接方法存在维数灾难问题,我们引入了一种使用“核技巧”的迭代加权算法。所得算法与图信号处理(GSP)中使用的迭代算法有相似之处;该框架可被视为离散GSP理论的连续域替代方案。该算法在恢复自由呼吸和非门控心脏数据中的应用展示了此框架在实际应用中的潜力。