Centre for Energy Research, Institute of Technical Physics and Materials Science, PO Box. 216, Budapest, 1536, Hungary.
National Centre of Experts and Research, Institute of Forensic Genetics, Budapest, Hungary.
Mol Genet Genomics. 2018 Dec;293(6):1579-1594. doi: 10.1007/s00438-018-1469-7. Epub 2018 Jul 4.
We present a new self-learning computational method searching for footprints of early migration processes determining the genetic compositions of recent human populations. The data being analysed are 26- and 18-dimensional mitochondrial and Y-chromosomal haplogroup distributions representing 50 recent and 34 ancient populations in Eurasia and America. The algorithms search for associations of haplogroups jointly propagating in a significant subset of these populations. Joint propagations of Hgs are detected directly by similar ranking lists of populations derived from Hg frequencies of the 50 Hg distributions. The method provides us the most characteristic associations of mitochondrial and Y-chromosomal haplogroups, and the set of populations where these associations propagate jointly. In addition, the typical ranking lists characterizing these Hg associations show the geographical distribution, the probable place of origin and the paths of their protection. Comparison to ancient data verifies that these recent geographical distributions refer to the most important prehistoric migrations supported by archaeological evidences.
我们提出了一种新的自学习计算方法,用于搜索早期迁移过程的足迹,以确定最近人类群体的遗传组成。正在分析的数据是代表欧亚大陆和美洲的 50 个现代和 34 个古代群体的 26 维和 18 维线粒体和 Y 染色体单倍群分布。该算法搜索在这些群体的一个重要子集中共传播的单倍群的关联。通过源自 50 个 Hg 分布的 Hg 频率的人群的相似排名列表,可以直接检测到 Hgs 的共同传播。该方法为我们提供了线粒体和 Y 染色体单倍群最具特征的关联,以及这些关联共同传播的人群集。此外,表征这些 Hg 关联的典型排名列表显示了地理分布、可能的起源地以及它们的保护路径。与古代数据的比较证实,这些最近的地理分布涉及到考古证据支持的最重要的史前迁徙。