Suppr超能文献

超声估测胎儿体重:基于印度人群模型的开发

Fetal weight estimation by ultrasound: development of Indian population-based models.

作者信息

Hiwale Sujitkumar, Misra Hemant, Ulman Shrutin

机构信息

Philips Research India, Philips Innovation Campus, Bengaluru, India.

出版信息

Ultrasonography. 2019 Jan;38(1):50-57. doi: 10.14366/usg.18004. Epub 2018 Apr 14.

Abstract

PURPOSE

Existing ultrasound-based fetal weight estimation models have been shown to have high errors when used in the Indian population. Therefore, the primary objective of this study was to develop Indian population-based models for fetal weight estimation, and the secondary objective was to compare their performance against established models.

METHODS

Retrospectively collected data from 173 cases were used in this study. The inclusion criteria were a live singleton pregnancy and an interval from the ultrasound scan to delivery of ≤7 days. Multiple stepwise regression (MSR) and lasso regression methods were used to derive fetal weight estimation models using a randomly selected training group (n=137) with cross-products of abdominal circumference (AC), biparietal diameter (BPD), head circumference (HC), and femur length (FL) as independent variables. In the validation group (n=36), the bootstrap method was used to compare the performance of the new models against 12 existing models.

RESULTS

The equations for the best-fit models obtained using the MSR and lasso methods were as follows: log10(EFW)=2.7843700+0.0004197(HC×AC)+0.0008545(AC×FL) and log10(EFW)=2.38 70211110+0.0074323216(HC)+0.0186555940(AC)+0.0013463735(BPD×FL)+0.0004519715 (HC×FL), respectively. In the training group, both models had very low systematic errors of 0.01% (±7.74%) and -0.03% (±7.70%), respectively. In the validation group, the performance of these models was found to be significantly better than that of the existing models.

CONCLUSION

The models presented in this study were found to be superior to existing models of ultrasound-based fetal weight estimation in the Indian population. We recommend a thorough evaluation of these models in independent studies.

摘要

目的

现有基于超声的胎儿体重估计模型在印度人群中使用时已被证明存在较高误差。因此,本研究的主要目的是开发基于印度人群的胎儿体重估计模型,次要目的是将其性能与已建立的模型进行比较。

方法

本研究使用了从173例病例中回顾性收集的数据。纳入标准为单胎活产妊娠以及超声扫描至分娩的间隔时间≤7天。采用多元逐步回归(MSR)和套索回归方法,以腹围(AC)、双顶径(BPD)、头围(HC)和股骨长度(FL)的交叉乘积作为自变量,在随机选择的训练组(n = 137)中推导胎儿体重估计模型。在验证组(n = 36)中,使用自助法将新模型的性能与12个现有模型进行比较。

结果

使用MSR和套索方法获得的最佳拟合模型方程如下:log10(EFW)=2.7843700 + 0.0004197(HC×AC)+0.0008545(AC×FL) 以及 log10(EFW)=2.3870211110 + 0.0074323216(HC)+0.0186555940(AC)+0.0013463735(BPD×FL)+0.0004519715(HC×FL)。在训练组中,两个模型的系统误差分别非常低,为0.01%(±7.74%)和 -0.03%(±7.70%)。在验证组中,发现这些模型的性能明显优于现有模型。

结论

本研究中提出的模型在印度人群中被发现优于现有的基于超声的胎儿体重估计模型。我们建议在独立研究中对这些模型进行全面评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ae/6323311/6c134890dff8/usg-18004f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验