Suppr超能文献

名声的定量衡量和统计分布。

The quantitative measure and statistical distribution of fame.

机构信息

Physics Department, University of Florida, Gainesville, Florida, United States of America.

出版信息

PLoS One. 2018 Jul 6;13(7):e0200196. doi: 10.1371/journal.pone.0200196. eCollection 2018.

Abstract

Fame and celebrity play an ever-increasing role in our culture. However, despite the cultural and economic importance of fame and its gradations, there exists no consensus method for quantifying the fame of an individual, or of comparing that of two individuals. We argue that, even if fame is difficult to measure with precision, one may develop useful metrics for fame that correlate well with intuition and that remain reasonably stable over time. Using datasets of recently deceased individuals who were highly renowned, we have evaluated several internet-based methods for quantifying fame. We find that some widely-used internet-derived metrics, such as search engine results, correlate poorly with human subject judgments of fame. However other metrics exist that agree well with human judgments and appear to offer workable, easily accessible measures of fame. Using such a metric we perform a preliminary investigation of the statistical distribution of fame, which has some of the power law character seen in other natural and social phenomena such as landslides and market crashes. In order to demonstrate how such findings can generate quantitative insight into celebrity culture, we assess some folk ideas regarding the frequency distribution and apparent clustering of celebrity deaths.

摘要

名声和名人在我们的文化中扮演着越来越重要的角色。然而,尽管名声及其层次在文化和经济上都很重要,但对于如何量化个人的名声,或者比较两个人的名声,目前还没有共识的方法。我们认为,即使名声很难精确衡量,人们也可以开发出有用的名声指标,这些指标与直觉很好地相关,并且随着时间的推移保持相当稳定。我们使用了最近去世的、享有盛誉的个人的数据集,评估了几种基于互联网的量化名声的方法。我们发现,一些广泛使用的互联网衍生指标,如搜索引擎结果,与人类对名声的判断相关性很差。但是,还有其他一些指标与人类判断非常吻合,并且似乎提供了可行的、易于获取的名声衡量标准。我们使用这样的指标对名声的统计分布进行了初步研究,该分布具有一些幂律特征,如山体滑坡和市场崩溃等其他自然和社会现象中所见的特征。为了展示这些发现如何为名人文化提供定量洞察力,我们评估了一些关于名人死亡的频率分布和明显聚类的民间观念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0519/6034871/0095e5a3d332/pone.0200196.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验