Suppr超能文献

诱导多能干细胞(iPSCs)作为研究代谢性遗传病中神经传递遗传缺陷的模型。

Induced pluripotent stem cells (iPSCs) as model to study inherited defects of neurotransmission in inborn errors of metabolism.

机构信息

Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.

出版信息

J Inherit Metab Dis. 2018 Nov;41(6):1103-1116. doi: 10.1007/s10545-018-0225-9. Epub 2018 Jul 6.

Abstract

The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs) has revolutionized the way of modeling human disease. Especially for the modeling of rare human monogenetic diseases with limited numbers of patients available worldwide and limited access to the mostly affected tissues, iPSCs have become an invaluable tool. To study rare diseases affecting neurotransmitter biosynthesis and neurotransmission, stem cell models carrying patient-specific mutations have become highly important as most of the cell types present in the human brain and the central nervous system (CNS), including motoneurons, neurons, oligodendrocytes, astrocytes, and microglia, can be differentiated from iPSCs following distinct developmental programs. Differentiation can be performed using classical 2D differentiation protocols, thereby generating specific subtypes of neurons or glial cells in a dish. On the other side, 3D differentiation into "organoids" opened new ways to study misregulated developmental processes associated with rare neurological and neurometabolic diseases. For the analysis of defects in neurotransmission associated with rare neurometabolic diseases, different types of brain organoids have been made available during the last years including forebrain, midbrain and cerebral organoids. In this review, we illustrate reprogramming of somatic cells to iPSCs, differentiation in 2D and 3D, as well as already available disease-specific iPSC models, and discuss current and future applications of these techniques.

摘要

体细胞重编程为诱导多能干细胞(iPSCs)的能力彻底改变了人类疾病建模的方式。特别是对于全球范围内可获得的患者数量有限且主要受累组织获取有限的罕见人类单基因疾病的建模,iPSCs 已成为一种非常宝贵的工具。为了研究影响神经递质生物合成和神经传递的罕见疾病,携带患者特异性突变的干细胞模型变得非常重要,因为大多数存在于人脑和中枢神经系统(CNS)中的细胞类型,包括运动神经元、神经元、少突胶质细胞、星形胶质细胞和小胶质细胞,都可以通过不同的发育程序从 iPSCs 中分化出来。分化可以通过经典的 2D 分化方案进行,从而在培养皿中产生特定类型的神经元或神经胶质细胞。另一方面,3D 分化为“类器官”为研究与罕见神经和神经代谢疾病相关的发育失调过程开辟了新途径。为了分析与罕见神经代谢疾病相关的神经传递缺陷,近年来已经提供了不同类型的脑类器官,包括前脑、中脑和大脑类器官。在这篇综述中,我们展示了体细胞重编程为 iPSCs、2D 和 3D 分化以及已经存在的疾病特异性 iPSC 模型,并讨论了这些技术的当前和未来应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验