Suppr超能文献

从稀疏神经记录和网格细胞的全局扰动推断电路机制。

Inferring circuit mechanisms from sparse neural recording and global perturbation in grid cells.

机构信息

Department of Psychology, The University of California, Berkeley, United States.

Department of Physics, The University of Texas, Austin, United States.

出版信息

Elife. 2018 Jul 9;7:e33503. doi: 10.7554/eLife.33503.

Abstract

A goal of systems neuroscience is to discover the circuit mechanisms underlying brain function. Despite experimental advances that enable circuit-wide neural recording, the problem remains open in part because solving the 'inverse problem' of inferring circuity and mechanism by merely observing activity is hard. In the grid cell system, we show through modeling that a technique based on global circuit perturbation and examination of a novel theoretical object called the could reveal the mechanisms of a cortical circuit at unprecedented detail using extremely sparse neural recordings. We establish feasibility, showing that the method can discriminate between recurrent versus feedforward mechanisms and amongst various recurrent mechanisms using recordings from a handful of cells. The proposed strategy demonstrates that sparse recording coupled with simple perturbation can reveal more about circuit mechanism than can full knowledge of network activity or the synaptic connectivity matrix.

摘要

系统神经科学的目标之一是发现大脑功能的基本电路机制。尽管实验技术的进步使得全脑范围的神经记录成为可能,但这个问题仍然没有得到解决,部分原因是仅仅通过观察活动来推断电路和机制的“反问题”是很困难的。在网格细胞系统中,我们通过建模表明,一种基于全局电路干扰的技术,并研究一种新的理论对象,称为 ,可以使用极其稀疏的神经记录,以前所未有的细节揭示皮质电路的机制。我们建立了可行性,表明该方法可以使用少数细胞的记录来区分递归与前馈机制以及各种递归机制。所提出的策略表明,稀疏记录与简单的干扰相结合,可以揭示比完全了解网络活动或突触连接矩阵更多的电路机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfdc/6078497/3d47c0bd3ee6/elife-33503-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验