Suppr超能文献

三维特征增强网络用于自动股骨分割。

Three-Dimensional Feature-Enhanced Network for Automatic Femur Segmentation.

出版信息

IEEE J Biomed Health Inform. 2019 Jan;23(1):243-252. doi: 10.1109/JBHI.2017.2785389. Epub 2017 Dec 20.

Abstract

Automatic femur segmentation from computed tomography volume is a crucial but challenging task for computer-aided diagnosis in orthopedic surgeries. The main obstacles are weak bone boundaries, narrowness of joint space, variations in femur density and shape, as well as diverse leg postures. In this paper, we presented a novel 3-D feature-enhanced network to address these challenges. The novelty of our approach lies in two feature enhancement modules, including the edge detection task and the multi-scale features fusion. First, the edge detection task was embedded into femur segmentation from computed tomography volume to solve the problems of narrow joint space and weak femur boundary. Crucially, a task-specific edge detector was used to optimize the performance of femur segmentation in an end-to-end trainable system. Second, the multi-scale features fusion provided both local and global contexts to handle the problems of large variations in leg postures as well as femur shape and density. The results demonstrated that accurate 3-D femur segmentation with a high Dice similarity coefficient of 96.88% was achieved using the developed method, and the segmentation of computed tomography volume took 0.93 s on an average.

摘要

从计算机断层扫描体积中自动分割股骨是计算机辅助骨科手术诊断中的一项关键但具有挑战性的任务。主要障碍包括骨边界弱、关节间隙狭窄、股骨密度和形状的变化以及不同的腿部姿势。在本文中,我们提出了一种新颖的 3D 特征增强网络来解决这些挑战。我们方法的新颖之处在于两个特征增强模块,包括边缘检测任务和多尺度特征融合。首先,将边缘检测任务嵌入到从计算机断层扫描体积中分割股骨中,以解决关节间隙狭窄和股骨边界弱的问题。至关重要的是,使用特定于任务的边缘检测器来优化端到端可训练系统中股骨分割的性能。其次,多尺度特征融合提供了局部和全局上下文,以处理腿部姿势以及股骨形状和密度的大变化问题。结果表明,使用所开发的方法实现了具有 96.88%高 Dice 相似系数的准确 3D 股骨分割,并且平均每个计算机断层扫描体积的分割时间为 0.93 秒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验