Suppr超能文献

相似文献

1
Magnetomotive Displacement of the Tympanic Membrane Using Magnetic Nanoparticles: Toward Enhancement of Sound Perception.
IEEE Trans Biomed Eng. 2018 Dec;65(12):2837-2846. doi: 10.1109/TBME.2018.2819649. Epub 2018 Mar 26.
2
Assessment of middle ear structure and function with optical coherence tomography.
Acta Otolaryngol. 2023 Jul-Aug;143(7):558-562. doi: 10.1080/00016489.2023.2224846. Epub 2023 Jun 27.
3
Frequency- and phase-sensitive magnetomotive ultrasound imaging of superparamagnetic iron oxide nanoparticles.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Mar;60(3):481-91. doi: 10.1109/TUFFC.2013.2591.
5
Volumetric full-range magnetomotive optical coherence tomography.
J Biomed Opt. 2014 Dec;19(12):126001. doi: 10.1117/1.JBO.19.12.126001.
6
Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography.
J Biophotonics. 2014 Jun;7(6):434-41. doi: 10.1002/jbio.201200186. Epub 2012 Dec 7.
7
Biomechanical sensing of magnetic nanoparticle hyperthermia-treated melanoma using magnetomotive optical coherence elastography.
Theranostics. 2021 Mar 23;11(12):5620-5633. doi: 10.7150/thno.55333. eCollection 2021.
8
In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8085-90. doi: 10.1073/pnas.0913679107. Epub 2010 Apr 19.
10
Dynamics of Magnetic Nanoparticle-Based Contrast Agents in Tissues Tracked Using Magnetomotive Optical Coherence Tomography.
IEEE J Sel Top Quantum Electron. 2009 Oct 6;16(3):671-697. doi: 10.1109/JSTQE.2009.2029547.

引用本文的文献

1
Influence of phosphate on bacterial release from activated carbon point-of-use filters and on biofilm characteristics.
Sci Total Environ. 2024 Mar 1;914:169932. doi: 10.1016/j.scitotenv.2024.169932. Epub 2024 Jan 8.
2
Imaging and characterization of transitions in biofilm morphology via anomalous diffusion following environmental perturbation.
Biomed Opt Express. 2022 Feb 23;13(3):1654-1670. doi: 10.1364/BOE.449131. eCollection 2022 Mar 1.
3
Magnetic particles in motion: magneto-motive imaging and sensing.
Theranostics. 2022 Jan 24;12(4):1783-1799. doi: 10.7150/thno.54056. eCollection 2022.
4
Biomechanical sensing of magnetic nanoparticle hyperthermia-treated melanoma using magnetomotive optical coherence elastography.
Theranostics. 2021 Mar 23;11(12):5620-5633. doi: 10.7150/thno.55333. eCollection 2021.
5
Effect of Nonphosphorus Corrosion Inhibitors on Biofilm Pore Structure and Mechanical Properties.
Environ Sci Technol. 2020 Nov 17;54(22):14716-14724. doi: 10.1021/acs.est.0c04645. Epub 2020 Oct 30.
6

本文引用的文献

1
Iron oxide nanoparticles can cross plasma membranes.
Sci Rep. 2017 Sep 12;7(1):11413. doi: 10.1038/s41598-017-11535-z.
2
Quantitative Pneumatic Otoscopy Using a Light-Based Ranging Technique.
J Assoc Res Otolaryngol. 2017 Aug;18(4):555-568. doi: 10.1007/s10162-017-0629-5. Epub 2017 Jun 26.
4
Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics.
IEEE J Sel Top Quantum Electron. 2016 Jul-Aug;22(4). doi: 10.1109/JSTQE.2015.2505147. Epub 2015 Dec 17.
6
Investigation of middle ear anatomy and function with combined video otoscopy-phase sensitive OCT.
Biomed Opt Express. 2016 Jan 5;7(2):238-50. doi: 10.1364/BOE.7.000238. eCollection 2016 Feb 1.
7
The ototronix MAXUM middle ear implant for severe high-frequency sensorineural hearing loss: Preliminary results.
Laryngoscope. 2016 Sep;126(9):2124-7. doi: 10.1002/lary.25872. Epub 2016 Mar 12.
8
In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles.
Chem Soc Rev. 2015 Dec 7;44(23):8576-607. doi: 10.1039/c5cs00541h. Epub 2015 Sep 21.
10
Mechanical contrast in spectroscopic magnetomotive optical coherence elastography.
Phys Med Biol. 2015 Sep 7;60(17):6655-68. doi: 10.1088/0031-9155/60/17/6655. Epub 2015 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验