Suppr超能文献

深度学习在药物发现和癌症研究中的应用:血管生成图像的自动化分析。

Deep Learning for Drug Discovery and Cancer Research: Automated Analysis of Vascularization Images.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2019 May-Jun;16(3):1029-1035. doi: 10.1109/TCBB.2018.2841396. Epub 2018 May 29.

Abstract

Likely drug candidates which are identified in traditional pre-clinical drug screens often fail in patient trials, increasing the societal burden of drug discovery. A major contributing factor to this phenomenon is the failure of traditional in vitro models of drug response to accurately mimic many of the more complex properties of human biology. We have recently introduced a new microphysiological system for growing vascularized, perfused microtissues that more accurately models human physiology and is suitable for large drug screens. In this work, we develop a machine learning model that can quickly and accurately flag compounds which effectively disrupt vascular networks from images taken before and after drug application in vitro. The system is based on a convolutional neural network and achieves near perfect accuracy while committing potentially no expensive false negatives.

摘要

在传统的临床前药物筛选中发现的可能药物候选物在患者试验中往往会失败,这增加了药物发现的社会负担。造成这种现象的一个主要因素是传统的体外药物反应模型无法准确模拟人类生物学的许多更复杂特性。我们最近引入了一种新的微生理系统,用于生长血管化、灌注的微组织,该系统更准确地模拟了人类生理学,适合进行大型药物筛选。在这项工作中,我们开发了一种机器学习模型,可以快速准确地标记出在体外药物应用前后拍摄的图像中有效破坏血管网络的化合物。该系统基于卷积神经网络,实现了近乎完美的准确性,同时不会产生昂贵的假阴性。

相似文献

7
Deep learning and virtual drug screening.深度学习与虚拟药物筛选。
Future Med Chem. 2018 Nov;10(21):2557-2567. doi: 10.4155/fmc-2018-0314. Epub 2018 Oct 5.
8
The power of deep learning to ligand-based novel drug discovery.深度学习在基于配体的新药发现中的作用。
Expert Opin Drug Discov. 2020 Jul;15(7):755-764. doi: 10.1080/17460441.2020.1745183. Epub 2020 Mar 31.
9
Recognition of peripheral blood cell images using convolutional neural networks.使用卷积神经网络识别外周血细胞图像。
Comput Methods Programs Biomed. 2019 Oct;180:105020. doi: 10.1016/j.cmpb.2019.105020. Epub 2019 Aug 9.

引用本文的文献

5
Vascularized organoid-on-a-chip: design, imaging, and analysis.血管化类器官芯片:设计、成像和分析。
Angiogenesis. 2024 May;27(2):147-172. doi: 10.1007/s10456-024-09905-z. Epub 2024 Feb 26.
7
Organ-on-a-chip meets artificial intelligence in drug evaluation.器官芯片与药物评价中的人工智能相遇。
Theranostics. 2023 Aug 15;13(13):4526-4558. doi: 10.7150/thno.87266. eCollection 2023.
10
Deep learning to enable color vision in the dark.深度学习让黑暗中的生物拥有彩色视觉。
PLoS One. 2022 Apr 6;17(4):e0265185. doi: 10.1371/journal.pone.0265185. eCollection 2022.

本文引用的文献

1
Tissue Chips to aid drug development and modeling for rare diseases.用于辅助罕见病药物研发及建模的组织芯片
Expert Opin Orphan Drugs. 2016;4(11):1113-1121. doi: 10.1080/21678707.2016.1244479. Epub 2016 Oct 19.
4
Detecting Cardiovascular Disease from Mammograms With Deep Learning.利用深度学习从乳房X光片中检测心血管疾病。
IEEE Trans Med Imaging. 2017 May;36(5):1172-1181. doi: 10.1109/TMI.2017.2655486. Epub 2017 Jan 19.
8
Deep Learning in Drug Discovery.药物研发中的深度学习
Mol Inform. 2016 Jan;35(1):3-14. doi: 10.1002/minf.201501008. Epub 2015 Dec 30.
10
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.更快的 R-CNN:基于区域建议网络的实时目标检测。
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验