Suppr超能文献

深度学习与虚拟药物筛选。

Deep learning and virtual drug screening.

机构信息

Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA.

出版信息

Future Med Chem. 2018 Nov;10(21):2557-2567. doi: 10.4155/fmc-2018-0314. Epub 2018 Oct 5.

Abstract

Current drug development is still costly and slow given tremendous technological advancements in drug discovery and medicinal chemistry. Using machine learning (ML) to virtually screen compound libraries promises to fix this for generating drug leads more efficiently and accurately. Herein, we explain the broad basics and integration of both virtual screening (VS) and ML. We then discuss artificial neural networks (ANNs) and their usage for VS. The ANN is emerging as the dominant classifier for ML in general, and has proven its utility for both structure-based and ligand-based VS. Techniques such as dropout, multitask learning and convolution improve the performance of ANNs and enable them to take on chemical meaning when learning about the drug-target-binding activity of compounds.

摘要

鉴于药物发现和药物化学领域的巨大技术进步,当前的药物研发仍然成本高昂且进展缓慢。利用机器学习(ML)对化合物库进行虚拟筛选有望解决这个问题,从而更有效地和准确地生成药物先导物。本文中,我们解释了虚拟筛选(VS)和 ML 的广泛基础和集成。然后,我们讨论了人工神经网络(ANN)及其在 VS 中的应用。ANN 已成为 ML 的主要分类器,并且已经证明其在基于结构和基于配体的 VS 中都具有实用性。诸如随机失活、多任务学习和卷积等技术可提高 ANN 的性能,并使它们在学习化合物与药物靶标结合活性时能够具有化学意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab5/6563286/d1b8f76853d7/fmc-10-2557-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验