Suppr超能文献

通过 MRI 和时增强超声的信息融合提高前列腺癌病灶的检测

Improving detection of prostate cancer foci via information fusion of MRI and temporal enhanced ultrasound.

机构信息

Queen's University, Kingston, ON, Canada.

The University of British Columbia, Vancouver, BC, Canada.

出版信息

Int J Comput Assist Radiol Surg. 2020 Jul;15(7):1215-1223. doi: 10.1007/s11548-020-02172-5. Epub 2020 May 5.

Abstract

PURPOSE

The detection of clinically significant prostate cancer (PCa) is shown to greatly benefit from MRI-ultrasound fusion biopsy, which involves overlaying pre-biopsy MRI volumes (or targets) with real-time ultrasound images. In previous literature, machine learning models trained on either MRI or ultrasound data have been proposed to improve biopsy guidance and PCa detection. However, quantitative fusion of information from MRI and ultrasound has not been explored in depth in a large study. This paper investigates information fusion approaches between MRI and ultrasound to improve targeting of PCa foci in biopsies.

METHODS

We build models of fully convolutional networks (FCN) using data from a newly proposed ultrasound modality, temporal enhanced ultrasound (TeUS), and apparent diffusion coefficient (ADC) from 107 patients with 145 biopsy cores. The architecture of our models is based on U-Net and U-Net with attention gates. Models are built using joint training through intermediate and late fusion of the data. We also build models with data from each modality, separately, to use as baseline. The performance is evaluated based on the area under the curve (AUC) for predicting clinically significant PCa.

RESULTS

Using our proposed deep learning framework and intermediate fusion, integration of TeUS and ADC outperforms the individual modalities for cancer detection. We achieve an AUC of 0.76 for detection of all PCa foci, and 0.89 for PCa with larger foci. Results indicate a shared representation between multiple modalities outperforms the average unimodal predictions.

CONCLUSION

We demonstrate the significant potential of multimodality integration of information from MRI and TeUS to improve PCa detection, which is essential for accurate targeting of cancer foci during biopsy. By using FCNs as the architecture of choice, we are able to predict the presence of clinically significant PCa in entire imaging planes immediately, without the need for region-based analysis. This reduces the overall computational time and enables future intra-operative deployment of this technology.

摘要

目的

MRI-超声融合活检显示可大大提高临床显著前列腺癌(PCa)的检测能力,该方法涉及将活检前 MRI 体积(或靶区)与实时超声图像叠加。在之前的文献中,已经提出了基于 MRI 或超声数据训练的机器学习模型来改善活检指导和 PCa 检测。然而,在大型研究中,尚未深入探索 MRI 和超声信息的定量融合。本文研究了 MRI 和超声之间的信息融合方法,以改善活检中 PCa 病灶的靶向性。

方法

我们使用来自新提出的超声模态——时变增强超声(TeUS)和 107 名患者的 145 个活检核心的表观扩散系数(ADC)的数据构建全卷积网络(FCN)模型。我们模型的架构基于 U-Net 和带有注意力门的 U-Net。通过数据的中间和晚期融合进行联合训练来构建模型。我们还分别使用每个模态的数据构建模型作为基线。根据预测临床显著 PCa 的曲线下面积(AUC)来评估性能。

结果

使用我们提出的深度学习框架和中间融合,TeUS 和 ADC 的集成在癌症检测方面优于单独的模态。我们实现了所有 PCa 病灶的检测 AUC 为 0.76,较大病灶的 PCa 检测 AUC 为 0.89。结果表明,多模态信息的共享表示优于平均单模态预测。

结论

我们证明了 MRI 和 TeUS 信息的多模态集成在提高 PCa 检测方面具有重要潜力,这对于活检中准确靶向癌症病灶至关重要。通过使用 FCN 作为首选架构,我们能够立即在整个成像平面上立即预测出具有临床意义的 PCa 的存在,而无需进行基于区域的分析。这减少了整体计算时间,并为这项技术在未来的术中部署奠定了基础。

相似文献

1
Improving detection of prostate cancer foci via information fusion of MRI and temporal enhanced ultrasound.
Int J Comput Assist Radiol Surg. 2020 Jul;15(7):1215-1223. doi: 10.1007/s11548-020-02172-5. Epub 2020 May 5.
2
Deep neural maps for unsupervised visualization of high-grade cancer in prostate biopsies.
Int J Comput Assist Radiol Surg. 2019 Jun;14(6):1009-1016. doi: 10.1007/s11548-019-01950-0. Epub 2019 Mar 23.
3
Augmenting MRI-transrectal ultrasound-guided prostate biopsy with temporal ultrasound data: a clinical feasibility study.
Int J Comput Assist Radiol Surg. 2015 Jun;10(6):727-35. doi: 10.1007/s11548-015-1184-3. Epub 2015 Apr 7.
4
Detection of prostate cancer using temporal sequences of ultrasound data: a large clinical feasibility study.
Int J Comput Assist Radiol Surg. 2016 Jun;11(6):947-56. doi: 10.1007/s11548-016-1395-2. Epub 2016 Apr 8.
6
Detection and grading of prostate cancer using temporal enhanced ultrasound: combining deep neural networks and tissue mimicking simulations.
Int J Comput Assist Radiol Surg. 2017 Aug;12(8):1293-1305. doi: 10.1007/s11548-017-1627-0. Epub 2017 Jun 20.
7
Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.
Med Image Anal. 2017 Dec;42:212-227. doi: 10.1016/j.media.2017.08.006. Epub 2017 Aug 24.
8
[Real-time MRI/US fusion-guided biopsy in biopsy-naïve and pre-biopsied patients with suspicion for prostate cancer].
Aktuelle Urol. 2015 Jan;46(1):34-8. doi: 10.1055/s-0034-1395563. Epub 2014 Dec 17.
9
Transfer learning from RF to B-mode temporal enhanced ultrasound features for prostate cancer detection.
Int J Comput Assist Radiol Surg. 2017 Jul;12(7):1111-1121. doi: 10.1007/s11548-017-1573-x. Epub 2017 Mar 27.
10
Toward a real-time system for temporal enhanced ultrasound-guided prostate biopsy.
Int J Comput Assist Radiol Surg. 2018 Aug;13(8):1201-1209. doi: 10.1007/s11548-018-1749-z. Epub 2018 Mar 27.

引用本文的文献

1
Artificial Intelligence Advancements in Oncology: A Review of Current Trends and Future Directions.
Biomedicines. 2025 Apr 13;13(4):951. doi: 10.3390/biomedicines13040951.
2
An overview of utilizing artificial intelligence in localized prostate cancer imaging.
Expert Rev Med Devices. 2025 Apr;22(4):293-310. doi: 10.1080/17434440.2025.2477601. Epub 2025 Mar 19.
4
Multimodal deep learning approaches for precision oncology: a comprehensive review.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae699.
6
Application of Machine Learning for Differentiating Bone Malignancy on Imaging: A Systematic Review.
Cancers (Basel). 2023 Mar 18;15(6):1837. doi: 10.3390/cancers15061837.
7
PROSTATE CANCER DIAGNOSIS WITH SPARSE BIOPSY DATA AND IN PRESENCE OF LOCATION UNCERTAINTY.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:443-447. doi: 10.1109/isbi48211.2021.9433892. Epub 2021 May 25.
8
Artificial intelligence for multimodal data integration in oncology.
Cancer Cell. 2022 Oct 10;40(10):1095-1110. doi: 10.1016/j.ccell.2022.09.012.
9
MDFNet: application of multimodal fusion method based on skin image and clinical data to skin cancer classification.
J Cancer Res Clin Oncol. 2023 Jul;149(7):3287-3299. doi: 10.1007/s00432-022-04180-1. Epub 2022 Aug 3.
10
A data-driven ultrasound approach discriminates pathological high grade prostate cancer.
Sci Rep. 2022 Jan 17;12(1):860. doi: 10.1038/s41598-022-04951-3.

本文引用的文献

1
Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS Assessment.
Radiology. 2019 Dec;293(3):607-617. doi: 10.1148/radiol.2019190938. Epub 2019 Oct 8.
2
Deep neural maps for unsupervised visualization of high-grade cancer in prostate biopsies.
Int J Comput Assist Radiol Surg. 2019 Jun;14(6):1009-1016. doi: 10.1007/s11548-019-01950-0. Epub 2019 Mar 23.
3
Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2.
Eur Urol. 2019 Sep;76(3):340-351. doi: 10.1016/j.eururo.2019.02.033. Epub 2019 Mar 18.
4
Attention gated networks: Learning to leverage salient regions in medical images.
Med Image Anal. 2019 Apr;53:197-207. doi: 10.1016/j.media.2019.01.012. Epub 2019 Feb 5.
5
Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation.
IEEE Trans Med Imaging. 2018 Feb;37(2):384-395. doi: 10.1109/TMI.2017.2743464. Epub 2017 Sep 26.
6
Detection and grading of prostate cancer using temporal enhanced ultrasound: combining deep neural networks and tissue mimicking simulations.
Int J Comput Assist Radiol Surg. 2017 Aug;12(8):1293-1305. doi: 10.1007/s11548-017-1627-0. Epub 2017 Jun 20.
7
DeepInfer: Open-Source Deep Learning Deployment Toolkit for Image-Guided Therapy.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10135. doi: 10.1117/12.2256011. Epub 2017 Mar 3.
8
Classification of Clinical Significance of MRI Prostate Findings Using 3D Convolutional Neural Networks.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10134. doi: 10.1117/12.2277123. Epub 2017 Mar 3.
9
Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study.
Lancet. 2017 Feb 25;389(10071):815-822. doi: 10.1016/S0140-6736(16)32401-1. Epub 2017 Jan 20.
10
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验