Suppr超能文献

定制范德华色散相互作用与外部电荷。

Tailoring van der Waals dispersion interactions with external electric charges.

机构信息

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.

Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg City, L-1511, Luxembourg.

出版信息

Nat Commun. 2018 Aug 1;9(1):3017. doi: 10.1038/s41467-018-05407-x.

Abstract

van der Waals (vdW) dispersion interactions strongly impact the properties of molecules and materials. Often, the description of vdW interactions should account for the coupling with pervasive electric fields, stemming from membranes, ionic channels, liquids, or nearby charged functional groups. However, this quantum-mechanical effect has been omitted in atomistic simulations, even in widely employed electronic-structure methods. Here, we develop a model and study the effects of an external charge on long-range vdW correlations. We show that a positive external charge stabilizes dispersion interactions, whereas a negative charge has an opposite effect. Our analytical results are benchmarked on a series of (bio)molecular dimers and supported by calculations with high-level correlated quantum-chemical methods, which estimate the induced dispersion to reach up to 35% of intermolecular binding energy (4 kT for amino-acid dimers at room temperature). Our analysis bridges electrostatic and electrodynamic descriptions of intermolecular interactions and may have implications for non-covalent reactions, exfoliation, dissolution, and permeation through biological membranes.

摘要

范德华 (vdW) 色散相互作用强烈影响分子和材料的性质。通常,vdW 相互作用的描述应考虑与普遍存在的电场的耦合,这些电场源自膜、离子通道、液体或附近带电荷的官能团。然而,这种量子力学效应在原子模拟中被忽略了,即使在广泛应用的电子结构方法中也是如此。在这里,我们开发了一个模型来研究外部电荷对长程 vdW 相关的影响。我们表明,正的外部电荷稳定了色散相互作用,而负电荷则产生相反的效果。我们的分析结果在一系列(生物)分子二聚体上进行了基准测试,并得到了高水准相关量子化学方法计算的支持,这些方法估计诱导的色散可达到分子间结合能的 35%(室温下氨基酸二聚体为 4 kT)。我们的分析将分子间相互作用的静电和电动力学描述联系起来,这可能对非共价反应、剥离、溶解和通过生物膜渗透具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/429a/6070553/64e0900bf6b5/41467_2018_5407_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验